stars pypi cran

Introduction

LaminDB is an open-source data framework to enable learning at scale in computational biology. It lets you track data transformations, curate datasets, manage metadata, and query a built-in database for biological entities & data structures.

Why?

Reproducing analytical results or understanding how a dataset or model was created can be a pain. Leave alone training models on historical data, orthogonal assays, or datasets generated by other teams.

Biological datasets are typically managed with versioned storage systems (file systems, object storage, git, dvc), UI-focused community or SaaS platforms, structureless data lakes, rigid data warehouses (SQL, monolithic arrays), and data lakehouses for tabular data.

LaminDB goes further with a lakehouse that models biological datasets beyond tables with enough structure to enable queries and enough freedom to keep the pace of R&D high.

For data structures like DataFrame, AnnData, .zarr, .tiledbsoma, etc., LaminDB tracks the rich context that collaborative biological research requires and uses it to validate and index datasets to enable queries. In particular, you get

  • data lineage: data sources and transformations; scientists and machine learning models

  • domain knowledge and experimental metadata: the features and labels derived from domain entities

In this blog post, we discuss a breadth of data management problems of the field.

LaminDB specs

The Python & R packages lamindb & laminr share almost the same API (.$).

Manage data & metadata with a unified API (“lakehouse”).

  • Use a built-in SQLite/Postgres database to organize files, folders & arrays across any number of storage locations

  • Query & search across data & metadata: filter, search

  • Model entities as an ORM which their own registry: Record

  • Model files and folders as datasets & models via one class: Artifact

  • Slice large array stores: openguide

  • Cache & load artifacts: cache, load

  • Manage features & labels: Feature, Schema, ULabel

  • Use array formats in memory & storage: DataFrame, AnnData, MuData, tiledbsoma, … backed by parquet, zarr, tiledb, HDF5, h5ad, DuckDB, …

  • Create iterable & queryable collections of artifacts with data loaders: Collection

  • Version artifacts, collections & transforms: IsVersioned

Track data lineage across notebooks, scripts, pipelines & UI.

  • Track scripts & notebooks with a simple method call: track()

  • Track functions with a decorator: tracked()

  • A unified registry for all your notebooks, scripts & pipelines: Transform

  • A unified registry for all data transformation runs: Run

  • Manage execution reports, source code and Python environments for notebooks & scripts

  • Integrate with workflow managers: redun, nextflow, snakemake

Manage registries for experimental metadata & in-house ontologies, import public ontologies.

Validate, standardize & annotate.

Organize and share data across a mesh of LaminDB instances.

  • Create & connect to instances with the same ease as git repos: lamin init & lamin connect

  • Zero-copy transfer data across instances

Integrate with analytics tools.

Zero lock-in, scalable, auditable.

  • Zero lock-in: LaminDB runs on generic backends server-side and is not a client for “Lamin Cloud”

    • Flexible storage backends (local, S3, GCP, https, HF, R2, anything fsspec supports)

    • Two SQL backends for managing metadata: SQLite & Postgres

  • Scalable: metadata registries support 100s of millions of entries, storage is as scalable as S3

  • Plug-in custom schema modules & manage database schema migrations

  • Auditable: data & metadata records are hashed, timestamped, and attributed to users (full audit log to come)

  • Secure: embedded in your infrastructure

  • Tested, typed, idempotent & ACID

LaminHub is a data collaboration hub built on LaminDB similar to how GitHub is built on git.

LaminHub specs

Explore at lamin.ai/explore.

Secure & intuitive access management.

While you stay in full control over storage & database permissions directly on AWS or GCP, LaminHub allows you and your users to additionally manage access similar to how you’d do it on GitHub, Google Drive, Microsoft Sharepoint, or Notion. See Manage access.

A UI to work with LaminDB instances.

See an overview of all datasets, models, code, and metadata in your instance.

See validated datasets in context of ontologies & experimental metadata.

Query & search.

See scripts, notebooks & pipelines with their inputs & outputs.

Track pipelines, notebooks & UI transforms in one place.

Quickstart

For setup, install the lamindb Python package and connect to a LaminDB instance.

pip install 'lamindb[jupyter,bionty]'  # support notebooks & biological ontologies
lamin login  # <-- you can skip this for local & self-hosted instances
lamin connect account/instance  # <-- replace with your instance
I don’t have write access to an instance.

Here’s how to create a local instance.

lamin init --storage ./mydata --modules bionty

In a Python session, transfer an scRNA-seq dataset from the laminlabs/cellxgene instance, compute marker genes with Scanpy, and save results.

import lamindb as ln

# Access inputs -------------------------------------------

ln.track()  # track your run of a notebook or script
artifact = ln.Artifact.using("laminlabs/cellxgene").get("7dVluLROpalzEh8m")  # query the artifact https://lamin.ai/laminlabs/cellxgene/artifact/7dVluLROpalzEh8m
adata = artifact.load()[:, :100]  # load into memory or sync to cache: filepath = artifact.cache()

# Your transformation -------------------------------------

import scanpy as sc  # find marker genes with Scanpy

sc.pp.normalize_total(adata)
sc.pp.log1p(adata)
sc.tl.rank_genes_groups(adata, groupby="cell_type")

# Save outputs --------------------------------------------

ln.Artifact.from_anndata(adata, key="my-datasets/my-result.h5ad").save()  # save versioned output
ln.finish()  # finish the run, save source code & run report

For setup, install the laminr and lamindb packages and connect to a LaminDB instance.

install.packages("laminr", dependencies = TRUE)  # install the laminr package from CRAN
laminr::install_lamindb(extra_packages = c("bionty"))  # install lamindb & bionty for use via reticulate
laminr::lamin_login()  # <-- you can skip this for local & self-hosted instances
laminr::lamin_connect("<account>/<instance>")  # <-- replace with your instance
I don’t have write access to an instance.

Here’s how to create a local instance.

laminr::lamin_init(storage = "./mydata", modules = c("bionty"))

In an R session, transfer an scRNA-seq dataset from the laminlabs/cellxgene instance, compute marker genes with Seurat, and save results.

library(laminr)
ln <- import_module("lamindb")  # instantiate the central object of the API

# Access inputs -------------------------------------------

ln$track()  # track your run of a notebook or script
artifact <- ln$Artifact$using("laminlabs/cellxgene")$get("7dVluLROpalzEh8m")  # query the artifact https://lamin.ai/laminlabs/cellxgene/artifact/7dVluLROpalzEh8m
adata <- artifact$load()  # load the artifact into memory or sync to cache via filepath <- artifact$cache()

# Your transformation -------------------------------------

library(Seurat)  # find marker genes with Seurat
seurat_obj <- CreateSeuratObject(counts = as(Matrix::t(adata$X), "CsparseMatrix"), meta.data = adata$obs)
seurat_obj[["RNA"]] <- AddMetaData(GetAssay(seurat_obj), adata$var)
Idents(seurat_obj) <- "cell_type"
seurat_obj <- NormalizeData(seurat_obj)
markers <- FindAllMarkers(seurat_obj, features = Features(seurat_obj)[1:100])
seurat_path <- tempfile(fileext = ".rds")
saveRDS(seurat_obj, seurat_path)

# Save outputs --------------------------------------------

ln$Artifact(seurat_path, key = "my-datasets/my-seurat-object.rds")$save()  # save versioned output
ln$Artifact$from_df(markers, key = "my-datasets/my-markers.parquet")$save()  # save versioned output
ln$finish()  # finish the run, save source code & run report

If you did not use RStudio’s notebook mode, create an html export and then run the following.

laminr::lamin_save("my-analyis.Rmd")  # save source code and html report for a `.qmd` or `.Rmd` file

The script produced the following data lineage.

artifact.view_lineage()

Explore data lineage interactively here.

Track notebooks & scripts

LaminDB provides a framework to transform datasets into more useful representations: validated & queryable datasets, machine learning models, and analytical insights. The transformations can be notebooks, scripts, pipelines, or functions.

The metadata involved in this process are stored in a LaminDB instance, a database that manages datasets in storage. For the following walk through LaminDB’s core features, we’ll be working with a local instance.

lamin init --storage ./lamin-intro --modules bionty
library(laminr)
lamin_init(storage = "./laminr-intro", modules = c("bionty"))
Hide code cell content
!lamin init --storage ./lamin-intro --modules bionty
 initialized lamindb: anonymous/lamin-intro
What else can I configure during setup?
  1. You can pass a cloud storage location to --storage (S3, GCP, R2, HF, etc.)

    --storage s3://my-bucket
    
  2. Instead of the default SQLite database pass a Postgres connection string to --db:

    --db postgresql://<user>:<pwd>@<hostname>:<port>/<dbname>
    
  3. Instead of a default instance name derived from the storage location, provide a custom name:

    --name my-name
    
  4. Mount additional schema modules:

    --modules bionty,wetlab,custom1
    

For more info, see Install & setup.

If you decide to connect your instance to the hub, you will see data & metadata in a UI.

Let’s now track the notebook that’s being run.

import lamindb as ln

ln.track()  # track the current notebook or script
library(laminr)
ln <- import_module("lamindb")  # instantiate the central `ln` object of the API

ln$track()  # track a run of your notebook or script
Hide code cell content
import lamindb as ln

ln.track()  # track the current notebook or script
 connected lamindb: anonymous/lamin-intro
 created Transform('19MYC2H4R58U0000'), started new Run('dpSfd7Ds...') at 2025-04-25 11:00:03 UTC
 notebook imports: anndata==0.11.4 bionty==1.3.1 lamindb==1.4.0

By calling track(), the notebook gets automatically linked as the source of all data that’s about to be saved! You can see all your transforms and their runs in the Transform and Run registries.

ln.Transform.df()
ln$Transform$df()
Hide code cell content
ln.Transform.df()
uid key description type source_code hash reference reference_type space_id _template_id version is_latest created_at created_by_id _aux _branch_code
id
1 19MYC2H4R58U0000 introduction.ipynb Introduction notebook None None None None 1 None None True 2025-04-25 11:00:03.123000+00:00 1 None 1
ln.Run.df()
ln$Run$df()
Hide code cell content
ln.Run.df()
uid name started_at finished_at reference reference_type _is_consecutive _status_code space_id transform_id report_id _logfile_id environment_id initiated_by_run_id created_at created_by_id _aux _branch_code
id
1 dpSfd7Dsu4mWV6FnqR2V None 2025-04-25 11:00:03.129100+00:00 None None None None 0 1 1 None None None None 2025-04-25 11:00:03.129000+00:00 1 None 1
What happened under the hood?
  1. The full run environment and imported package versions of current notebook were detected

  2. Notebook metadata was detected and stored in a Transform record with a unique id

  3. Run metadata was detected and stored in a Run record with a unique id

The Transform registry stores data transformations: scripts, notebooks, pipelines, functions.

The Run registry stores executions of transforms. Many runs can be linked to the same transform if executed with different context (time, user, input data, etc.).

How do I track a pipeline instead of a notebook?

Leverage a pipeline integration, see: Pipelines – workflow managers. Or manually add code as seen below.

transform = ln.Transform(name="My pipeline")
transform.version = "1.2.0"  # tag the version
ln.track(transform)
Why should I care about tracking notebooks?

Because of interactivity & humans are in the loop, most mistakes happen when using notebooks.

track() makes notebooks & derived results reproducible & auditable, enabling to learn from mistakes.

This is important as much insight generated from biological data is driven by computational biologists interacting with it. An early blog post on this is here.

Is this compliant with OpenLineage?

Yes. What OpenLineage calls a “job”, LaminDB calls a “transform”. What OpenLineage calls a “run”, LaminDB calls a “run”.

Manage artifacts

The Artifact class manages datasets & models that are stored as files, folders, or arrays. Artifact is a registry to manage search, queries, validation & storage access.

You can register data objects (DataFrame, AnnData, …) and files or folders in local storage, AWS S3 (s3://), Google Cloud (gs://), Hugging Face (hf://), or any other file system supported by fsspec.

Create an artifact

Let’s first look at an exemplary dataframe.

df = ln.core.datasets.small_dataset1(with_typo=True)
df
df <- ln$core$datasets$small_dataset1(otype = "DataFrame", with_typo = TRUE)
df
Hide code cell content
df = ln.core.datasets.small_dataset1(with_typo=True)
df
ENSG00000153563 ENSG00000010610 ENSG00000170458 perturbation sample_note cell_type_by_expert cell_type_by_model assay_oid concentration treatment_time_h donor
sample1 1 3 5 DMSO was ok B cell B cell EFO:0008913 0.1% 24 D0001
sample2 2 4 6 IFNJ looks naah CD8-positive, alpha-beta T cell T cell EFO:0008913 200 nM 24 D0002
sample3 3 5 7 DMSO pretty! 🤩 CD8-positive, alpha-beta T cell T cell EFO:0008913 0.1% 6 None

This is how you create an artifact from a dataframe.

artifact = ln.Artifact.from_df(df, key="my_datasets/rnaseq1.parquet").save()  # create & save
artifact.describe()  # describe
artifact <- ln$Artifact$from_df(df, key = "my_datasets/rnaseq1.parquet")$save()  # create & save
artifact$describe()  # describe
Hide code cell content
artifact = ln.Artifact.from_df(df, key="my_datasets/rnaseq1.parquet").save()
artifact.describe()
Artifact .parquet/DataFrame
└── General
    ├── .uid = 'hWRrfTaWuN1GabjO0000'
    ├── .key = 'my_datasets/rnaseq1.parquet'
    ├── .size = 8997
    ├── .hash = 'qYD7dPHB11U7qz5-1fGQzg'
    ├── .n_observations = 3
    ├── .path = /home/runner/work/lamin-docs/lamin-docs/docs/lamin-intro/.lamindb/hWRrfTaWuN1GabjO0000.parquet
    ├── .created_by = anonymous
    ├── .created_at = 2025-04-25 11:00:03
    └── .transform = 'Introduction'

Access artifacts

Get the artifact by key.

artifact = ln.Artifact.get(key="my_datasets/rnaseq1.parquet")
artifact <- ln$Artifact$get(key = "my_datasets/rnaseq1.parquet")
Hide code cell content
artifact = ln.Artifact.get(key="my_datasets/rnaseq1.parquet")

And this is how you load it back into memory.

artifact.load()
artifact$load()
Hide code cell content
artifact.load()
ENSG00000153563 ENSG00000010610 ENSG00000170458 perturbation sample_note cell_type_by_expert cell_type_by_model assay_oid concentration treatment_time_h donor
sample1 1 3 5 DMSO was ok B cell B cell EFO:0008913 0.1% 24 D0001
sample2 2 4 6 IFNJ looks naah CD8-positive, alpha-beta T cell T cell EFO:0008913 200 nM 24 D0002
sample3 3 5 7 DMSO pretty! 🤩 CD8-positive, alpha-beta T cell T cell EFO:0008913 0.1% 6 None

Typically your artifact is in a cloud storage location. To get a local file path to it, call cache().

artifact.cache()
artifact$cache()
Hide code cell content
artifact.cache()
PosixUPath('/home/runner/work/lamin-docs/lamin-docs/docs/lamin-intro/.lamindb/hWRrfTaWuN1GabjO0000.parquet')

If the data is large, you might not want to cache but stream it via open(). For more on this, see: Slice arrays.

Trace data lineage

You can understand where an artifact comes from by looking at its Transform & Run records.

artifact.transform
artifact$transform
Hide code cell content
artifact.transform
Transform(uid='19MYC2H4R58U0000', is_latest=True, key='introduction.ipynb', description='Introduction', type='notebook', space_id=1, created_by_id=1, created_at=2025-04-25 11:00:03 UTC)
artifact.run
artifact$run
Hide code cell content
artifact.run
Run(uid='dpSfd7Dsu4mWV6FnqR2V', started_at=2025-04-25 11:00:03 UTC, space_id=1, transform_id=1, created_by_id=1, created_at=2025-04-25 11:00:03 UTC)

Or visualize deeper data lineage with the view_lineage() method. Here we’re only one step deep.

artifact.view_lineage()
artifact$view_lineage()
Hide code cell content
artifact.view_lineage()
! calling anonymously, will miss private instances
_images/fdea572e82cc8a05c299cfe5ebdbe62da47648b23d538cc44cd3cc6ed8c6b76c.svg
Show me a more interesting example, please!

Explore and load the notebook from here.

Explore data lineage interactively here.

I just want to see the transforms.
artifact.transform.view_lineage()  # Python only

Once you’re done, at the end of your notebook or script, call finish(). Here, we’re not yet done so we’re commenting it out.

# ln.finish()  # mark run as finished, save execution report, source code & environment
# ln$finish()  # mark run as finished, save execution report & source code

If you did not use RStudio’s notebook mode, you have to render an HTML externally.

  1. Render the notebook to HTML via one of:

    • In RStudio, click the “Knit” button

    • From the command line, run

      Rscript -e 'rmarkdown::render("introduction.Rmd")'
      
    • Use the rmarkdown package in R

      rmarkdown::render("introduction.Rmd")
      
  2. Save it to your LaminDB instance via one of:

    • Using the lamin_save() function in R

      lamin_save("introduction.Rmd")
      
    • Using the lamin CLI

      lamin save introduction.Rmd
      
Here is how a notebook looks on the hub.

Explore.

To create a new version of a notebook or script, run lamin load on the terminal, e.g.,

$ lamin load https://lamin.ai/laminlabs/lamindata/transform/13VINnFk89PE0004
→ notebook is here: mcfarland_2020_preparation.ipynb

Note that data lineage also helps to understand what a dataset is being used for, not only where it comes from. Many datasets are being used over and over for different purposes and it’s often useful to understand how.

Annotate an artifact

You can annotate artifacts with features and labels. Features are measurement dimensions (e.g. "organism", "temperature") and labels are measured categories (e.g. "human", "mouse").

Let’s annotate an artifact with a ULabel, a built-in universal label ontology.

# create a label
my_experiment = ln.ULabel(name="My experiment").save()

# annotate the artifact with a label
artifact.ulabels.add(my_experiment)

# describe the artifact
artifact.describe()
# create a label
my_experiment <- ln$ULabel(name = "My experiment")$save()

# annotate the artifact with a label
artifact$ulabels$add(my_experiment)

# describe the artifact
artifact$describe()
Hide code cell content
# create & save a ulabel
my_experiment = ln.ULabel(name="My experiment").save()

# annotate the artifact with a ulabel
artifact.ulabels.add(my_experiment)

# describe the artifact
artifact.describe()
Artifact .parquet/DataFrame
├── General
│   ├── .uid = 'hWRrfTaWuN1GabjO0000'
│   ├── .key = 'my_datasets/rnaseq1.parquet'
│   ├── .size = 8997
│   ├── .hash = 'qYD7dPHB11U7qz5-1fGQzg'
│   ├── .n_observations = 3
│   ├── .path = /home/runner/work/lamin-docs/lamin-docs/docs/lamin-intro/.lamindb/hWRrfTaWuN1GabjO0000.parquet
│   ├── .created_by = anonymous
│   ├── .created_at = 2025-04-25 11:00:03
│   └── .transform = 'Introduction'
└── Labels
    └── .ulabels                    ULabel                     My experiment                            

This is how you query artifacts based on the annotation.

ln.Artifact.filter(ulabels=my_experiment).df()
ln$Artifact$filter(ulabels = my_experiment)$df()
Hide code cell content
ln.Artifact.filter(ulabels=my_experiment).df()
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux _branch_code
id
1 hWRrfTaWuN1GabjO0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 qYD7dPHB11U7qz5-1fGQzg None 3 md5 True False 1 1 None None True 1 2025-04-25 11:00:03.651000+00:00 1 None 1

You can also annotate with labels from other registries, e.g., the biological ontologies in bionty.

import bionty as bt

# create a cell type label from the source ontology
cell_type = bt.CellType.from_source(name="effector T cell").save()

# annotate the artifact with a cell type
artifact.cell_types.add(cell_type)

# describe the artifact
artifact.describe()
bt <- import_module("bionty")

# create a cell type label from the source ontology
cell_type <- bt$CellType$from_source(name = "effector T cell")$save()

# annotate the artifact with a cell type
artifact$cell_types$add(cell_type)

# describe the artifact
artifact$describe()
Hide code cell content
import bionty as bt

# create a cell type label from the source ontology
cell_type = bt.CellType.from_source(name="effector T cell").save()

# annotate the artifact with a cell type
artifact.cell_types.add(cell_type)

# describe the artifact
artifact.describe()
Artifact .parquet/DataFrame
├── General
│   ├── .uid = 'hWRrfTaWuN1GabjO0000'
│   ├── .key = 'my_datasets/rnaseq1.parquet'
│   ├── .size = 8997
│   ├── .hash = 'qYD7dPHB11U7qz5-1fGQzg'
│   ├── .n_observations = 3
│   ├── .path = /home/runner/work/lamin-docs/lamin-docs/docs/lamin-intro/.lamindb/hWRrfTaWuN1GabjO0000.parquet
│   ├── .created_by = anonymous
│   ├── .created_at = 2025-04-25 11:00:03
│   └── .transform = 'Introduction'
└── Labels
    └── .cell_types                 bionty.CellType            effector T cell                          
        .ulabels                    ULabel                     My experiment                            

This is how you query artifacts by cell type annotations.

ln.Artifact.filter(cell_types=cell_type).df()
ln$Artifact$filter(cell_types = cell_type)$df()
Hide code cell content
ln.Artifact.filter(cell_types=cell_type).df()
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux _branch_code
id
1 hWRrfTaWuN1GabjO0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 qYD7dPHB11U7qz5-1fGQzg None 3 md5 True False 1 1 None None True 1 2025-04-25 11:00:03.651000+00:00 1 None 1

If you want to annotate by non-categorical metadata or indicate the feature for a label, annotate via features.

# define the "temperature" & "experiment" features
ln.Feature(name="temperature", dtype=float).save()
ln.Feature(name="experiment", dtype=ln.ULabel).save()

# annotate the artifact
artifact.features.add_values({"temperature": 21.6, "experiment": "My experiment"})

# describe the artifact
artifact.describe()
# define the "temperature" & "experiment" features
ln$Feature(name = "temperature", dtype = "float")$save()
ln$Feature(name = "experiment", dtype = ln$ULabel)$save()

# annotate the artifact
artifact$features$add_values(
  list(temperature = 21.6, experiment = "My experiment")
)

# describe the artifact
artifact$describe()
Hide code cell content
# define the "temperature" & "experiment" features
ln.Feature(name="temperature", dtype=float).save()
ln.Feature(name="experiment", dtype=ln.ULabel).save()

# annotate the artifact
artifact.features.add_values({"temperature": 21.6, "experiment": "My experiment"})

# describe the artifact
artifact.describe()
Artifact .parquet/DataFrame
├── General
│   ├── .uid = 'hWRrfTaWuN1GabjO0000'
│   ├── .key = 'my_datasets/rnaseq1.parquet'
│   ├── .size = 8997
│   ├── .hash = 'qYD7dPHB11U7qz5-1fGQzg'
│   ├── .n_observations = 3
│   ├── .path = /home/runner/work/lamin-docs/lamin-docs/docs/lamin-intro/.lamindb/hWRrfTaWuN1GabjO0000.parquet
│   ├── .created_by = anonymous
│   ├── .created_at = 2025-04-25 11:00:03
│   └── .transform = 'Introduction'
├── Linked features
│   └── experiment                  cat[ULabel]                My experiment                            
temperature                 float                      21.6                                     
└── Labels
    └── .cell_types                 bionty.CellType            effector T cell                          
        .ulabels                    ULabel                     My experiment                            

This is how you query artifacts by features.

ln.Artifact.filter(temperature=21.6).df()
ln$Artifact$filter(temperature = 21.6)$df()
Hide code cell content
ln.Artifact.filter(temperature=21.6).df()
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux _branch_code
id
1 hWRrfTaWuN1GabjO0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 qYD7dPHB11U7qz5-1fGQzg None 3 md5 True False 1 1 None None True 1 2025-04-25 11:00:03.651000+00:00 1 None 1

Validate an artifact

Validated datasets are more re-usable by analysts and machine learning models. You can define what a valid artifact should look like by defining a schema.

In lamindb, validation also means annotation with the validated metadata which increases the findability of a dataset.

Can you give me examples for what findability and usability means?
  1. Findability: Which datasets measured expression of cell marker CD14? Which characterized cell line K562? Which have a test & train split? Etc.

  2. Usability: Are there typos in feature names? Are there typos in labels? Are types and units of features consistent? Etc.

import bionty as bt  # <-- use bionty to access registries with imported public ontologies

# define a few more valid labels
ln.ULabel(name="DMSO").save()
ln.ULabel(name="IFNG").save()

# define a few more valid features
ln.Feature(name="perturbation", dtype=ln.ULabel).save()
ln.Feature(name="cell_type_by_model", dtype=bt.CellType).save()
ln.Feature(name="cell_type_by_expert", dtype=bt.CellType).save()
ln.Feature(name="assay_oid", dtype=bt.ExperimentalFactor.ontology_id).save()
ln.Feature(name="donor", dtype=str, nullable=True).save()
ln.Feature(name="concentration", dtype=str).save()
ln.Feature(name="treatment_time_h", dtype="num", coerce_dtype=True).save()

# define a schema that merely enforces a feature identifier type
schema = ln.Schema(itype=ln.Feature).save()
bt <- import_module("bionty")  # <-- use bionty to access registries with imported public ontologies

# define a few more valid labels
ln$ULabel(name = "DMSO")$save()
ln$ULabel(name = "IFNG")$save()

# define a few more valid features
ln$Feature(name = "perturbation", dtype = ln$ULabel)$save()
ln$Feature(name = "cell_type_by_model", dtype = bt$CellType)$save()
ln$Feature(name = "cell_type_by_expert", dtype = bt$CellType)$save()
ln$Feature(name = "assay_oid", dtype = bt$ExperimentalFactor$ontology_id)$save()
ln$Feature(name = "donor", dtype = "str", nullable = TRUE)$save()
ln$Feature(name = "concentration", dtype = "str")$save()
ln$Feature(name = "treatment_time_h", dtype = "num", coerce_dtype = TRUE)$save()

# define a schema that merely enforces a feature identifier type
schema <- ln$Schema(itype = ln$Feature)$save()
Hide code cell content
import bionty as bt  # <-- use bionty to access registries with imported public ontologies

# define a few more valid labels
ln.ULabel(name="DMSO").save()
ln.ULabel(name="IFNG").save()

# define a few more valid features
ln.Feature(name="perturbation", dtype=ln.ULabel).save()
ln.Feature(name="cell_type_by_model", dtype=bt.CellType).save()
ln.Feature(name="cell_type_by_expert", dtype=bt.CellType).save()
ln.Feature(name="assay_oid", dtype=bt.ExperimentalFactor.ontology_id).save()
ln.Feature(name="donor", dtype=str, nullable=True).save()
ln.Feature(name="sample_note", dtype=str, nullable=True).save()
ln.Feature(name="concentration", dtype=str).save()
ln.Feature(name="treatment_time_h", dtype="num", coerce_dtype=True).save()

# define a schema that merely enforces a feature identifier type
schema = ln.Schema(itype=ln.Feature).save()

If you pass a schema object to the Artifact constructor, the artifact will be validated & annotated. Let’s try this.

artifact = ln.Artifact.from_df(df, key="my_datasets/rnaseq1.parquet", schema=schema)
artifact <- ln$Artifact$from_df(df, key = "my_datasets/rnaseq1.parquet", schema = schema)
Hide code cell content
try:
    artifact = ln.Artifact.from_df(df, key="my_datasets/rnaseq1.parquet", schema=schema)
except ln.errors.ValidationError as error:
    print(str(error))
 returning existing artifact with same hash: Artifact(uid='hWRrfTaWuN1GabjO0000', is_latest=True, key='my_datasets/rnaseq1.parquet', suffix='.parquet', kind='dataset', otype='DataFrame', size=8997, hash='qYD7dPHB11U7qz5-1fGQzg', n_observations=3, space_id=1, storage_id=1, run_id=1, created_by_id=1, created_at=2025-04-25 11:00:03 UTC); to track this artifact as an input, use: ln.Artifact.get()
!   1 term is not validated: 'IFNJ'
    → fix typos, remove non-existent values, or save terms via .add_new_from("perturbation")

Because there is a typo in the perturbation column, validation fails. Let’s fix it by making a new version.

Make a new version of an artifact

# fix the "IFNJ" typo
df["perturbation"] = df["perturbation"].cat.rename_categories({"IFNJ": "IFNG"})

# create a new version
artifact = ln.Artifact.from_df(df, key="my_datasets/rnaseq1.parquet", schema=schema).save()

# see the annotations
artifact.describe()

# simplest way to check that artifact was validated
artifact.schema

# see all versions of the artifact
artifact.versions.df()
# fix the "IFNJ" typo
levels(df$perturbation) <- c("DMSO", "IFNG")
df["sample2", "perturbation"] <- "IFNG"

# create a new version
artifact <- ln$Artifact$from_df(df, key = "my_datasets/rnaseq1.parquet", schema = schema)$save()

# see the annotations
artifact$describe()

# simplest way to check that artifact was validated
artifact$schema

# see all versions of an artifact
artifact$versions$df()
Hide code cell content
# fix the "IFNJ" typo
df["perturbation"] = df["perturbation"].cat.rename_categories({"IFNJ": "IFNG"})

# create a new version
artifact = ln.Artifact.from_df(
    df, key="my_datasets/rnaseq1.parquet", schema=schema
).save()

# see the annotations
artifact.describe()

# see all versions of the artifact
artifact.versions.df()
 creating new artifact version for key='my_datasets/rnaseq1.parquet' (storage: '/home/runner/work/lamin-docs/lamin-docs/docs/lamin-intro')
! 3 unique terms (27.30%) are not validated for name: 'ENSG00000153563', 'ENSG00000010610', 'ENSG00000170458'
Artifact .parquet/DataFrame
├── General
│   ├── .uid = 'hWRrfTaWuN1GabjO0001'
│   ├── .key = 'my_datasets/rnaseq1.parquet'
│   ├── .size = 8997
│   ├── .hash = 'tcuE7mvTOGmtda83Qxf82Q'
│   ├── .n_observations = 3
│   ├── .path = /home/runner/work/lamin-docs/lamin-docs/docs/lamin-intro/.lamindb/hWRrfTaWuN1GabjO0001.parquet
│   ├── .created_by = anonymous
│   ├── .created_at = 2025-04-25 11:00:08
│   └── .transform = 'Introduction'
├── Dataset features
│   └── columns8                 [Feature]                                                           
assay_oid                   cat[bionty.ExperimentalF…  single-cell RNA sequencing               
cell_type_by_expert         cat[bionty.CellType]       B cell, CD8-positive, alpha-beta T cell  
cell_type_by_model          cat[bionty.CellType]       B cell, T cell                           
perturbation                cat[ULabel]                DMSO, IFNG                               
donor                       str                                                                 
sample_note                 str                                                                 
concentration               str                                                                 
treatment_time_h            num                                                                 
└── Labels
    └── .cell_types                 bionty.CellType            T cell, B cell, CD8-positive, alpha-beta…
        .experimental_factors       bionty.ExperimentalFactor  single-cell RNA sequencing               
        .ulabels                    ULabel                     DMSO, IFNG                               
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux _branch_code
id
2 hWRrfTaWuN1GabjO0001 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 tcuE7mvTOGmtda83Qxf82Q None 3 md5 True False 1 1 1.0 None True 1 2025-04-25 11:00:08.152000+00:00 1 None 1
1 hWRrfTaWuN1GabjO0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 qYD7dPHB11U7qz5-1fGQzg None 3 md5 True False 1 1 NaN None False 1 2025-04-25 11:00:03.651000+00:00 1 None 1

The content of the dataset is now validated and the dataset is richly annotated and queryable by all entities that you defined.

Can I also create new versions without passing key?

That works, too, you can use revises:

artifact_v1 = ln.Artifact.from_df(df, description="Just a description").save()
# below revises artifact_v1
artifact_v2 = ln.Artifact.from_df(df_updated, revises=artifact_v1).save()

The good thing about passing revises: Artifact is that you don’t need to worry about coming up with naming conventions for paths.

The good thing about versioning based on key is that it’s how all data versioning tools are doing it.

Query & search registries

We’ve already seen a few queries. Let’s now walk through the topic systematically.

To get an overview over all artifacts in your instance, call df.

ln.Artifact.df()
ln$Artifact$df()
Hide code cell content
ln.Artifact.df()
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux _branch_code
id
2 hWRrfTaWuN1GabjO0001 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 tcuE7mvTOGmtda83Qxf82Q None 3 md5 True False 1 1 1.0 None True 1 2025-04-25 11:00:08.152000+00:00 1 None 1
1 hWRrfTaWuN1GabjO0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 qYD7dPHB11U7qz5-1fGQzg None 3 md5 True False 1 1 NaN None False 1 2025-04-25 11:00:03.651000+00:00 1 None 1

The Artifact registry additionally supports seeing all feature annotations of an artifact.

ln.Artifact.df(features=True)
ln$Artifact$df(features = TRUE)
Hide code cell content
ln.Artifact.df(features=True)
uid key description cell_type_by_expert cell_type_by_model experiment perturbation temperature
id
2 hWRrfTaWuN1GabjO0001 my_datasets/rnaseq1.parquet None {B cell, CD8-positive, alpha-beta T cell} {B cell, T cell} NaN {IFNG, DMSO} {21.6}
1 hWRrfTaWuN1GabjO0000 my_datasets/rnaseq1.parquet None NaN NaN {My experiment} NaN NaN

LaminDB’s central classes are registries that store records (Record objects). If you want to see the fields of a registry, look at the class or auto-complete.

ln.Artifact
ln$Artifact
Hide code cell content
ln.Artifact
Artifact
  Simple fields
    .uid: CharField
    .key: CharField
    .description: CharField
    .suffix: CharField
    .kind: CharField
    .otype: CharField
    .size: BigIntegerField
    .hash: CharField
    .n_files: BigIntegerField
    .n_observations: BigIntegerField
    .version: CharField
    .is_latest: BooleanField
    .created_at: DateTimeField
    .updated_at: DateTimeField
  Relational fields
    .space: Space
    .storage: Storage
    .run: Run
    .schema: Schema
    .created_by: User
    .ulabels: ULabel
    .input_of_runs: Run
    .feature_sets: Schema
    .collections: Collection
    .references: Reference
    .projects: Project
  Bionty fields
    .organisms: bionty.Organism
    .genes: bionty.Gene
    .proteins: bionty.Protein
    .cell_markers: bionty.CellMarker
    .tissues: bionty.Tissue
    .cell_types: bionty.CellType
    .diseases: bionty.Disease
    .cell_lines: bionty.CellLine
    .phenotypes: bionty.Phenotype
    .pathways: bionty.Pathway
    .experimental_factors: bionty.ExperimentalFactor
    .developmental_stages: bionty.DevelopmentalStage
    .ethnicities: bionty.Ethnicity

Each registry is a table in the relational schema of the underlying database. With view(), you can see the latest records in the database.

ln.view()
ln$view()
Hide code cell content
ln.view()
****************
* module: core *
****************
Artifact
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux _branch_code
id
2 hWRrfTaWuN1GabjO0001 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 tcuE7mvTOGmtda83Qxf82Q None 3 md5 True False 1 1 1.0 None True 1 2025-04-25 11:00:08.152000+00:00 1 None 1
1 hWRrfTaWuN1GabjO0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 8997 qYD7dPHB11U7qz5-1fGQzg None 3 md5 True False 1 1 NaN None False 1 2025-04-25 11:00:03.651000+00:00 1 None 1
Feature
uid name dtype is_type unit description array_rank array_size array_shape proxy_dtype synonyms _expect_many _curation space_id type_id run_id created_at created_by_id _aux _branch_code
id
10 zfWgjTtjmns1 treatment_time_h num None None None 0 0 None None None True None 1 None 1 2025-04-25 11:00:05.831000+00:00 1 {'af': {'0': None, '1': True, '2': True}} 1
9 VJCdAoY78V36 concentration str None None None 0 0 None None None True None 1 None 1 2025-04-25 11:00:05.828000+00:00 1 {'af': {'0': None, '1': True, '2': False}} 1
8 mfDiMINW2RZh sample_note str None None None 0 0 None None None True None 1 None 1 2025-04-25 11:00:05.824000+00:00 1 {'af': {'0': None, '1': True, '2': False}} 1
7 nfrzSLCjMrJ0 donor str None None None 0 0 None None None True None 1 None 1 2025-04-25 11:00:05.821000+00:00 1 {'af': {'0': None, '1': True, '2': False}} 1
6 Cwh0FN5ardbi assay_oid cat[bionty.ExperimentalFactor.ontology_id] None None None 0 0 None None None True None 1 None 1 2025-04-25 11:00:05.817000+00:00 1 {'af': {'0': None, '1': True, '2': False}} 1
5 tTu2cz5oX5aT cell_type_by_expert cat[bionty.CellType] None None None 0 0 None None None True None 1 None 1 2025-04-25 11:00:05.813000+00:00 1 {'af': {'0': None, '1': True, '2': False}} 1
4 MnGja49kieRu cell_type_by_model cat[bionty.CellType] None None None 0 0 None None None True None 1 None 1 2025-04-25 11:00:05.809000+00:00 1 {'af': {'0': None, '1': True, '2': False}} 1
FeatureValue
value hash space_id feature_id run_id created_at created_by_id _aux _branch_code
id
1 21.6 None 1 1 1 2025-04-25 11:00:05.741000+00:00 1 None 1
Run
uid name started_at finished_at reference reference_type _is_consecutive _status_code space_id transform_id report_id _logfile_id environment_id initiated_by_run_id created_at created_by_id _aux _branch_code
id
1 dpSfd7Dsu4mWV6FnqR2V None 2025-04-25 11:00:03.129100+00:00 None None None None 0 1 1 None None None None 2025-04-25 11:00:03.129000+00:00 1 None 1
Schema
uid name description n itype is_type otype dtype hash minimal_set ordered_set maximal_set _curation slot space_id type_id validated_by_id composite_id run_id created_at created_by_id _aux _branch_code
id
1 uOTUXve5vc8rQZ1nSG7c None None -1 Feature False None None g2J9bi8LKs3KVM0SU4hU9w True False False None None 1 None None None 1 2025-04-25 11:00:05.834000+00:00 1 {} 1
2 sQPu3DMJXP8DG3yRJv1M None None 8 Feature False DataFrame None Qpsf-xPN693LEjzx6LkPiA True False False None None 1 None None None 1 2025-04-25 11:00:08.181000+00:00 1 {} 1
Storage
uid root description type region instance_uid space_id run_id created_at created_by_id _aux _branch_code
id
1 Pxmynucic82n /home/runner/work/lamin-docs/lamin-docs/docs/l... None local None 3MepSh2Col3I 1 None 2025-04-25 11:00:00.174000+00:00 1 None 1
Transform
uid key description type source_code hash reference reference_type space_id _template_id version is_latest created_at created_by_id _aux _branch_code
id
1 19MYC2H4R58U0000 introduction.ipynb Introduction notebook None None None None 1 None None True 2025-04-25 11:00:03.123000+00:00 1 None 1
ULabel
uid name is_type description reference reference_type space_id type_id run_id created_at created_by_id _aux _branch_code
id
3 wfnHGAoh IFNG False None None None 1 None 1 2025-04-25 11:00:05.802000+00:00 1 None 1
2 wEwiR7Rz DMSO False None None None 1 None 1 2025-04-25 11:00:05.798000+00:00 1 None 1
1 cAvWrm3f My experiment False None None None 1 None 1 2025-04-25 11:00:04.590000+00:00 1 None 1
******************
* module: bionty *
******************
CellType
uid name ontology_id abbr synonyms description space_id source_id run_id created_at created_by_id _aux _branch_code
id
16 6By01L04 alpha-beta T cell CL:0000789 None alpha-beta T-cell|alpha-beta T lymphocyte|alph... A T Cell That Expresses An Alpha-Beta T Cell R... 1 32 1 2025-04-25 11:00:07.170000+00:00 1 None 1
17 4BEwsp1Q mature alpha-beta T cell CL:0000791 None mature alpha-beta T-lymphocyte|mature alpha-be... A Alpha-Beta T Cell That Has A Mature Phenotype. 1 32 1 2025-04-25 11:00:07.170000+00:00 1 None 1
15 6IC9NGJE CD8-positive, alpha-beta T cell CL:0000625 None CD8-positive, alpha-beta T-cell|CD8-positive, ... A T Cell Expressing An Alpha-Beta T Cell Recep... 1 32 1 2025-04-25 11:00:06.858000+00:00 1 None 1
14 7GpphKmr lymphocyte of B lineage CL:0000945 None None A Lymphocyte Of B Lineage With The Commitment ... 1 32 1 2025-04-25 11:00:06.520000+00:00 1 None 1
13 ryEtgi1y B cell CL:0000236 None B lymphocyte|B-lymphocyte|B-cell A Lymphocyte Of B Lineage That Is Capable Of B... 1 32 1 2025-04-25 11:00:06.203000+00:00 1 None 1
3 4bKGljt0 cell CL:0000000 None None A Material Entity Of Anatomical Origin (Part O... 1 32 1 2025-04-25 11:00:05.668000+00:00 1 None 1
4 22LvKd01 T cell CL:0000084 None T-cell|T-lymphocyte|T lymphocyte A Type Of Lymphocyte Whose Defining Characteri... 1 32 1 2025-04-25 11:00:05.668000+00:00 1 None 1
ExperimentalFactor
uid name ontology_id abbr synonyms description molecule instrument measurement space_id source_id run_id created_at created_by_id _aux _branch_code
id
2 789nVHwo RNA assay EFO:0001457 None None An Assay With Input Rna RNA assay None None 1 67 1 2025-04-25 11:00:08.084000+00:00 1 None 1
3 1wLRxESw assay by molecule EFO:0002772 None None None None None None 1 67 1 2025-04-25 11:00:08.084000+00:00 1 None 1
4 6oIjaW4X assay by instrument EFO:0002773 None None None None None None 1 67 1 2025-04-25 11:00:08.084000+00:00 1 None 1
5 6dI7vyK2 assay by sequencer EFO:0003740 None sequencing assay An Assay That Exploits A Sequencer As The Inst... None assay by sequencer None 1 67 1 2025-04-25 11:00:08.084000+00:00 1 None 1
6 2zGOHoUs single cell sequencing EFO:0007832 None None Single Cell Sequencing Examines The Sequence I... None single cell sequencing None 1 67 1 2025-04-25 11:00:08.084000+00:00 1 None 1
1 4WYv9kl0 single-cell RNA sequencing EFO:0008913 None single-cell RNA-seq|scRNA-seq|single cell RNA ... A Protocol That Provides The Expression Profil... RNA assay single cell sequencing None 1 67 1 2025-04-25 11:00:07.715000+00:00 1 None 1
Source
uid entity organism name in_db currently_used description url md5 source_website space_id dataframe_artifact_id version run_id created_at created_by_id _aux _branch_code
id
67 2a1HvjdB bionty.ExperimentalFactor all efo False True The Experimental Factor Ontology http://www.ebi.ac.uk/efo/releases/v3.70.0/efo.owl None https://bioportal.bioontology.org/ontologies/EFO 1 None 3.70.0 None 2025-04-25 11:00:00.263000+00:00 1 None 1
53 5Xov8Lap bionty.Disease all mondo False False Mondo Disease Ontology http://purl.obolibrary.org/obo/mondo/releases/... None https://mondo.monarchinitiative.org 1 None 2024-02-06 None 2025-04-25 11:00:00.263000+00:00 1 None 1
54 69lnSXfR bionty.Disease all mondo False False Mondo Disease Ontology http://purl.obolibrary.org/obo/mondo/releases/... None https://mondo.monarchinitiative.org 1 None 2024-01-03 None 2025-04-25 11:00:00.263000+00:00 1 None 1
55 4ss2Hizg bionty.Disease all mondo False False Mondo Disease Ontology http://purl.obolibrary.org/obo/mondo/releases/... None https://mondo.monarchinitiative.org 1 None 2023-08-02 None 2025-04-25 11:00:00.263000+00:00 1 None 1
56 Hgw08Vk3 bionty.Disease all mondo False False Mondo Disease Ontology http://purl.obolibrary.org/obo/mondo/releases/... None https://mondo.monarchinitiative.org 1 None 2023-04-04 None 2025-04-25 11:00:00.263000+00:00 1 None 1
57 UUZUtULu bionty.Disease all mondo False False Mondo Disease Ontology http://purl.obolibrary.org/obo/mondo/releases/... None https://mondo.monarchinitiative.org 1 None 2023-02-06 None 2025-04-25 11:00:00.263000+00:00 1 None 1
58 7DH1aJIr bionty.Disease all mondo False False Mondo Disease Ontology http://purl.obolibrary.org/obo/mondo/releases/... None https://mondo.monarchinitiative.org 1 None 2022-10-11 None 2025-04-25 11:00:00.263000+00:00 1 None 1
Which registries have I already learned about? 🤔
  • Artifact: datasets & models stored as files, folders, or arrays

  • Transform: transforms of artifacts

  • Run: runs of transforms

  • User: users

  • Storage: local or cloud storage locations

Every registry supports arbitrary relational queries using the class methods get and filter. The syntax for it is Django’s query syntax.

Here are some simple query examples.

# get a single record (here the current notebook)
transform = ln.Transform.get(key="introduction.ipynb")

# get a set of records by filtering for a directory (LaminDB treats directories like AWS S3, as the prefix of the storage key)
ln.Artifact.filter(key__startswith="my_datasets/").df()

# query all artifacts ingested from a transform
artifacts = ln.Artifact.filter(transform=transform).all()

# query all artifacts ingested from a notebook with "intro" in the title
artifacts = ln.Artifact.filter(
    transform__description__icontains="intro",
).all()
# get a single record (here the current notebook)
transform <- ln$Transform$get(key = "introduction.Rmd")

# get a set of records by filtering for a directory (LaminDB treats directories like AWS S3, as the prefix of the storage key)
ln$Artifact$filter(key__startswith = "my_datasets/")$df()

# query all artifacts ingested from a transform
artifacts <- ln$Artifact$filter(transform = transform)$all()

# query all artifacts ingested from a notebook with "intro" in the title
artifacts <- ln$Artifact$filter(
  transform__description__icontains = "intro",
)$all()
Hide code cell content
# get a single record (here the current notebook)
transform = ln.Transform.get(key="introduction.ipynb")

# get a set of records by filtering for a directory (LaminDB treats directories like AWS S3, as the prefix of the storage key)
ln.Artifact.filter(key__startswith="my_datasets/").df()

# query all artifacts ingested from a transform
artifacts = ln.Artifact.filter(transform=transform).all()

# query all artifacts ingested from a notebook with "intro" in the title
artifacts = ln.Artifact.filter(
    transform__description__icontains="intro",
).all()
What does a double underscore mean?

For any field, the double underscore defines a comparator, e.g.,

  • name__icontains="Martha": name contains "Martha" when ignoring case

  • name__startswith="Martha": name starts with "Martha

  • name__in=["Martha", "John"]: name is "John" or "Martha"

For more info, see: Query & search registries.

Can I chain filters and searches?

Yes: ln.Artifact.filter(suffix=".jpg").search("my image")

The class methods search and lookup help with approximate matches.

# search artifacts
ln.Artifact.search("iris").df().head()

# search transforms
ln.Transform.search("intro").df()

# look up records with auto-complete
ulabels = ln.ULabel.lookup()
# search artifacts
ln$Artifact$search("iris")$df()

# search transforms
ln$Transform$search("intro")$df()

# look up records with auto-complete
ulabels <- ln$ULabel$lookup()
Show me a screenshot

For more info, see: Query & search registries.

Manage files & folders

Let’s look at a folder in the cloud that contains 3 sub-folders storing images & metadata of Iris flowers, generated in 3 subsequent studies.

# we use anon=True here in case no aws credentials are configured
ln.UPath("s3://lamindata/iris_studies", anon=True).view_tree()
# we use anon=True here in case no aws credentials are configured
ln$UPath("s3://lamindata/iris_studies", anon = TRUE)$view_tree()
Hide code cell content
# we use anon=True here in case no aws credentials are configured
ln.UPath("s3://lamindata/iris_studies", anon=True).view_tree()
3 sub-directories & 151 files with suffixes '.jpg', '.csv'
s3://lamindata/iris_studies
├── study0_raw_images/
│   ├── iris-0337d20a3b7273aa0ddaa7d6afb57a37a759b060e4401871db3cefaa6adc068d.jpg
│   ├── iris-0797945218a97d6e5251b4758a2ba1b418cbd52ce4ef46a3239e4b939bd9807b.jpg
│   ├── iris-0f133861ea3fe1b68f9f1b59ebd9116ff963ee7104a0c4200218a33903f82444.jpg
│   ├── iris-0fec175448a23db03c1987527f7e9bb74c18cffa76ef003f962c62603b1cbb87.jpg
│   ├── iris-125b6645e086cd60131764a6bed12650e0f7f2091c8bbb72555c103196c01881.jpg
│   ├── iris-13dfaff08727abea3da8cfd8d097fe1404e76417fefe27ff71900a89954e145a.jpg
│   ├── iris-1566f7f5421eaf423a82b3c1cd1328f2a685c5ef87d8d8e710f098635d86d3d0.jpg
│   ├── iris-1804702f49c2c385f8b30913569aebc6dce3da52ec02c2c638a2b0806f16014e.jpg
│   ├── iris-318d451a8c95551aecfde6b55520f302966db0a26a84770427300780b35aa05a.jpg
│   ├── iris-3dec97fe46d33e194520ca70740e4c2e11b0ffbffbd0aec0d06afdc167ddf775.jpg
│   ├── iris-3eed72bc2511f619190ce79d24a0436fef7fcf424e25523cb849642d14ac7bcf.jpg
│   ├── iris-430fa45aad0edfeb5b7138ff208fdeaa801b9830a9eb68f378242465b727289a.jpg
│   ├── iris-4cc15cd54152928861ecbdc8df34895ed463403efb1571dac78e3223b70ef569.jpg
│   ├── iris-4febb88ef811b5ca6077d17ef8ae5dbc598d3f869c52af7c14891def774d73fa.jpg
│   ├── iris-590e7f5b8f4de94e4b82760919abd9684ec909d9f65691bed8e8f850010ac775.jpg
│   ├── iris-5a313749aa61e9927389affdf88dccdf21d97d8a5f6aa2bd246ca4bc926903ba.jpg
│   ├── iris-5b3106db389d61f4277f43de4953e660ff858d8ab58a048b3d8bf8d10f556389.jpg
│   ├── iris-5f4e8fffde2404cc30be275999fddeec64f8a711ab73f7fa4eb7667c8475c57b.jpg
│   ├── iris-68d83ad09262afb25337ccc1d0f3a6d36f118910f36451ce8a6600c77a8aa5bd.jpg
│   ├── iris-70069edd7ab0b829b84bb6d4465b2ca4038e129bb19d0d3f2ba671adc03398cc.jpg
│   ├── iris-7038aef1137814473a91f19a63ac7a55a709c6497e30efc79ca57cfaa688f705.jpg
│   ├── iris-74d1acf18cfacd0a728c180ec8e1c7b4f43aff72584b05ac6b7c59f5572bd4d4.jpg
│   ├── iris-7c3b5c5518313fc6ff2c27fcbc1527065cbb42004d75d656671601fa485e5838.jpg
│   ├── iris-7cf1ebf02b2cc31539ed09ab89530fec6f31144a0d5248a50e7c14f64d24fe6e.jpg
│   ├── iris-7dcc69fa294fe04767706c6f455ea6b31d33db647b08aab44b3cd9022e2f2249.jpg
│   ├── iris-801b7efb867255e85137bc1e1b06fd6cbab70d20cab5b5046733392ecb5b3150.jpg
│   ├── iris-8305dd2a080e7fe941ea36f3b3ec0aa1a195ad5d957831cf4088edccea9465e2.jpg
│   ├── iris-83f433381b755101b9fc9fbc9743e35fbb8a1a10911c48f53b11e965a1cbf101.jpg
│   ├── iris-874121a450fa8a420bdc79cc7808fd28c5ea98758a4b50337a12a009fa556139.jpg
│   ├── iris-8c216e1acff39be76d6133e1f549d138bf63359fa0da01417e681842210ea262.jpg
│   ├── iris-92c4268516ace906ad1ac44592016e36d47a8c72a51cacca8597ba9e18a8278b.jpg
│   ├── iris-95d7ec04b8158f0873fa4aab7b0a5ec616553f3f9ddd6623c110e3bc8298248f.jpg
│   ├── iris-9ce2d8c4f1eae5911fcbd2883137ba5542c87cc2fe85b0a3fbec2c45293c903e.jpg
│   ├── iris-9ee27633bb041ef1b677e03e7a86df708f63f0595512972403dcf5188a3f48f5.jpg
│   ├── iris-9fb8d691550315506ae08233406e8f1a4afed411ea0b0ac37e4b9cdb9c42e1ec.jpg
│   ├── iris-9ffe51c2abd973d25a299647fa9ccaf6aa9c8eecf37840d7486a061438cf5771.jpg
│   ├── iris-a2be5db78e5b603a5297d9a7eec4e7f14ef2cba0c9d072dc0a59a4db3ab5bb13.jpg
│   ├── iris-ad7da5f15e2848ca269f28cd1dc094f6f685de2275ceaebb8e79d2199b98f584.jpg
│   ├── iris-bc515e63b5a4af49db8c802c58c83db69075debf28c792990d55a10e881944d9.jpg
│   ├── iris-bd8d83096126eaa10c44d48dbad4b36aeb9f605f1a0f6ca929d3d0d492dafeb6.jpg
│   ├── iris-bdae8314e4385d8e2322abd8e63a82758a9063c77514f49fc252e651cbd79f82.jpg
│   ├── iris-c175cd02ac392ecead95d17049f5af1dcbe37851c3e42d73e6bb813d588ea70b.jpg
│   ├── iris-c31e6056c94b5cb618436fbaac9eaff73403fa1b87a72db2c363d172a4db1820.jpg
│   ├── iris-ca40bc5839ee2f9f5dcac621235a1db2f533f40f96a35e1282f907b40afa457d.jpg
│   ├── iris-ddb685c56cfb9c8496bcba0d57710e1526fff7d499536b3942d0ab375fa1c4a6.jpg
│   ├── iris-e437a7c7ad2bbac87fef3666b40c4de1251b9c5f595183eda90a8d9b1ef5b188.jpg
│   ├── iris-e7e0774289e2153cc733ff62768c40f34ac9b7b42e23c1abc2739f275e71a754.jpg
│   ├── iris-e9da6dd69b7b07f80f6a813e2222eae8c8f7c3aeaa6bcc02b25ea7d763bcf022.jpg
│   ├── iris-eb01666d4591b2e03abecef5a7ded79c6d4ecb6d1922382c990ad95210d55795.jpg
│   ├── iris-f6e4890dee087bd52e2c58ea4c6c2652da81809603ea3af561f11f8c2775c5f3.jpg
│   └── meta.csv
├── study1_raw_images/
│   ├── iris-0879d3f5b337fe512da1c7bf1d2bfd7616d744d3eef7fa532455a879d5cc4ba0.jpg
│   ├── iris-0b486eebacd93e114a6ec24264e035684cebe7d2074eb71eb1a71dd70bf61e8f.jpg
│   ├── iris-0ff5ba898a0ec179a25ca217af45374fdd06d606bb85fc29294291facad1776a.jpg
│   ├── iris-1175239c07a943d89a6335fb4b99a9fb5aabb2137c4d96102f10b25260ae523f.jpg
│   ├── iris-1289c57b571e8e98e4feb3e18a890130adc145b971b7e208a6ce5bad945b4a5a.jpg
│   ├── iris-12adb3a8516399e27ff1a9d20d28dca4674836ed00c7c0ae268afce2c30c4451.jpg
│   ├── iris-17ac8f7b5734443090f35bdc531bfe05b0235b5d164afb5c95f9d35f13655cf3.jpg
│   ├── iris-2118d3f235a574afd48a1f345bc2937dad6e7660648516c8029f4e76993ea74d.jpg
│   ├── iris-213cd179db580f8e633087dcda0969fd175d18d4f325cb5b4c5f394bbba0c1e0.jpg
│   ├── iris-21a1255e058722de1abe928e5bbe1c77bda31824c406c53f19530a3ca40be218.jpg
│   ├── iris-249370d38cc29bc2a4038e528f9c484c186fe46a126e4b6c76607860679c0453.jpg
│   ├── iris-2ac575a689662b7045c25e2554df5f985a3c6c0fd5236fabef8de9c78815330c.jpg
│   ├── iris-2c5b373c2a5fd214092eb578c75eb5dc84334e5f11a02f4fa23d5d316b18f770.jpg
│   ├── iris-2ecaad6dfe3d9b84a756bc2303a975a732718b954a6f54eae85f681ea3189b13.jpg
│   ├── iris-32827aec52e0f3fa131fa85f2092fc6fa02b1b80642740b59d029cef920c26b3.jpg
│   ├── iris-336fc3472b6465826f7cd87d5cef8f78d43cf2772ebe058ce71e1c5bad74c0e1.jpg
│   ├── iris-432026d8501abcd495bd98937a82213da97fca410af1c46889eabbcf2fd1b589.jpg
│   ├── iris-49a9158e46e788a39eeaefe82b19504d58dde167f540df6bc9492c3916d5f7ca.jpg
│   ├── iris-4b47f927405d90caa15cbf17b0442390fc71a2ca6fb8d07138e8de17d739e9a4.jpg
│   ├── iris-5691cad06fe37f743025c097fa9c4cec85e20ca3b0efff29175e60434e212421.jpg
│   ├── iris-5c38dba6f6c27064eb3920a5758e8f86c26fec662cc1ac4b5208d5f30d1e3ead.jpg
│   ├── iris-5da184e8620ebf0feef4d5ffe4346e6c44b2fb60cecc0320bd7726a1844b14cd.jpg
│   ├── iris-66eee9ff0bfa521905f733b2a0c6c5acad7b8f1a30d280ed4a17f54fe1822a7e.jpg
│   ├── iris-6815050b6117cf2e1fd60b1c33bfbb94837b8e173ff869f625757da4a04965c9.jpg
│   ├── iris-793fe85ddd6a97e9c9f184ed20d1d216e48bf85aa71633eff6d27073e0825d54.jpg
│   ├── iris-850229e6293a741277eb5efaa64d03c812f007c5d0f470992a8d4cfdb902230c.jpg
│   ├── iris-86d782d20ef7a60e905e367050b0413ca566acc672bc92add0bb0304faa54cfc.jpg
│   ├── iris-875a96790adc5672e044cf9da9d2edb397627884dfe91c488ab3fb65f65c80ff.jpg
│   ├── iris-96f06136df7a415550b90e443771d0b5b0cd990b503b64cc4987f5cb6797fa9b.jpg
│   ├── iris-9a889c96a37e8927f20773783a084f31897f075353d34a304c85e53be480e72a.jpg
│   ├── iris-9e3208f4f9fedc9598ddf26f77925a1e8df9d7865a4d6e5b4f74075d558d6a5e.jpg
│   ├── iris-a7e13b6f2d7f796768d898f5f66dceefdbd566dd4406eea9f266fc16dd68a6f2.jpg
│   ├── iris-b026efb61a9e3876749536afe183d2ace078e5e29615b07ac8792ab55ba90ebc.jpg
│   ├── iris-b3c086333cb5ccb7bb66a163cf4bf449dc0f28df27d6580a35832f32fd67bfc9.jpg
│   ├── iris-b795e034b6ea08d3cd9acaa434c67aca9d17016991e8dd7d6fd19ae8f6120b77.jpg
│   ├── iris-bb4a7ad4c844987bc9dc9dfad2b363698811efe3615512997a13cd191c23febc.jpg
│   ├── iris-bd60a6ed0369df4bea1934ef52277c32757838123456a595c0f2484959553a36.jpg
│   ├── iris-c15d6019ebe17d7446ced589ef5ef7a70474d35a8b072e0edfcec850b0a106db.jpg
│   ├── iris-c45295e76c6289504921412293d5ddbe4610bb6e3b593ea9ec90958e74b73ed2.jpg
│   ├── iris-c50d481f9fa3666c2c3808806c7c2945623f9d9a6a1d93a17133c4cb1560c41c.jpg
│   ├── iris-df4206653f1ec9909434323c05bb15ded18e72587e335f8905536c34a4be3d45.jpg
│   ├── iris-e45d869cb9d443b39d59e35c2f47870f5a2a335fce53f0c8a5bc615b9c53c429.jpg
│   ├── iris-e76fa5406e02a312c102f16eb5d27c7e0de37b35f801e1ed4c28bd4caf133e7a.jpg
│   ├── iris-e8d3fd862aae1c005bcc80a73fd34b9e683634933563e7538b520f26fd315478.jpg
│   ├── iris-ea578f650069a67e5e660bb22b46c23e0a182cbfb59cdf5448cf20ce858131b6.jpg
│   ├── iris-eba0c546e9b7b3d92f0b7eb98b2914810912990789479838807993d13787a2d9.jpg
│   ├── iris-f22d4b9605e62db13072246ff6925b9cf0240461f9dfc948d154b983db4243b9.jpg
│   ├── iris-fac5f8c23d8c50658db0f4e4a074c2f7771917eb52cbdf6eda50c12889510cf4.jpg
│   └── meta.csv
└── study2_raw_images/
    ├── iris-01cdd55ca6402713465841abddcce79a2e906e12edf95afb77c16bde4b4907dc.jpg
    ├── iris-02868b71ddd9b33ab795ac41609ea7b20a6e94f2543fad5d7fa11241d61feacf.jpg
    ├── iris-0415d2f3295db04bebc93249b685f7d7af7873faa911cd270ecd8363bd322ed5.jpg
    ├── iris-0c826b6f4648edf507e0cafdab53712bb6fd1f04dab453cee8db774a728dd640.jpg
    ├── iris-10fb9f154ead3c56ba0ab2c1ab609521c963f2326a648f82c9d7cabd178fc425.jpg
    ├── iris-14cbed88b0d2a929477bdf1299724f22d782e90f29ce55531f4a3d8608f7d926.jpg
    ├── iris-186fe29e32ee1405ddbdd36236dd7691a3c45ba78cc4c0bf11489fa09fbb1b65.jpg
    ├── iris-1b0b5aabd59e4c6ed1ceb54e57534d76f2f3f97e0a81800ff7ed901c35a424ab.jpg
    ├── iris-1d35672eb95f5b1cf14c2977eb025c246f83cdacd056115fdc93e946b56b610c.jpg
    ├── iris-1f941001f508ff1bd492457a90da64e52c461bfd64587a3cf7c6bf1bcb35adab.jpg
    ├── iris-2a09038b87009ecee5e5b4cd4cef068653809cc1e08984f193fad00f1c0df972.jpg
    ├── iris-308389e34b6d9a61828b339916aed7af295fdb1c7577c23fb37252937619e7e4.jpg
    ├── iris-30e4e56b1f170ff4863b178a0a43ea7a64fdd06c1f89a775ec4dbf5fec71e15c.jpg
    ├── iris-332953f4d6a355ca189e2508164b24360fc69f83304e7384ca2203ddcb7c73b5.jpg
    ├── iris-338fc323ed045a908fb1e8ff991255e1b8e01c967e36b054cb65edddf97b3bb0.jpg
    ├── iris-34a7cc16d26ba0883574e7a1c913ad50cf630e56ec08ee1113bf3584f4e40230.jpg
    ├── iris-360196ba36654c0d9070f95265a8a90bc224311eb34d1ab0cf851d8407d7c28e.jpg
    ├── iris-36132c6df6b47bda180b1daaafc7ac8a32fd7f9af83a92569da41429da49ea5b.jpg
    ├── iris-36f2b9282342292b67f38a55a62b0c66fa4e5bb58587f7fec90d1e93ea8c407a.jpg
    ├── iris-37ad07fd7b39bc377fa6e9cafdb6e0c57fb77df2c264fe631705a8436c0c2513.jpg
    ├── iris-3ba1625bb78e4b69b114bdafcdab64104b211d8ebadca89409e9e7ead6a0557c.jpg
    ├── iris-4c5d9a33327db025d9c391aeb182cbe20cfab4d4eb4ac951cc5cd15e132145d8.jpg
    ├── iris-522f3eb1807d015f99e66e73b19775800712890f2c7f5b777409a451fa47d532.jpg
    ├── iris-589fa96b9a3c2654cf08d05d3bebf4ab7bc23592d7d5a95218f9ff87612992fa.jpg
    ├── iris-61b71f1de04a03ce719094b65179b06e3cd80afa01622b30cda8c3e41de6bfaa.jpg
    ├── iris-62ef719cd70780088a4c140afae2a96c6ca9c22b72b078e3b9d25678d00b88a5.jpg
    ├── iris-819130af42335d4bb75bebb0d2ee2e353a89a3d518a1d2ce69842859c5668c5a.jpg
    ├── iris-8669e4937a2003054408afd228d99cb737e9db5088f42d292267c43a3889001a.jpg
    ├── iris-86c76e0f331bc62192c392cf7c3ea710d2272a8cc9928d2566a5fc4559e5dce4.jpg
    ├── iris-8a8bc54332a42bb35ee131d7b64e9375b4ac890632eb09e193835b838172d797.jpg
    ├── iris-8e9439ec7231fa3b9bc9f62a67af4e180466b32a72316600431b1ec93e63b296.jpg
    ├── iris-90b7d491b9a39bb5c8bb7649cce90ab7f483c2759fb55fda2d9067ac9eec7e39.jpg
    ├── iris-9dededf184993455c411a0ed81d6c3c55af7c610ccb55c6ae34dfac2f8bde978.jpg
    ├── iris-9e6ce91679c9aaceb3e9c930f11e788aacbfa8341a2a5737583c14a4d6666f3d.jpg
    ├── iris-a0e65269f7dc7801ac1ad8bd0c5aa547a70c7655447e921d1d4d153a9d23815e.jpg
    ├── iris-a445b0720254984275097c83afbdb1fe896cb010b5c662a6532ed0601ea24d7c.jpg
    ├── iris-a6b85bf1f3d18bbb6470440592834c2c7f081b490836392cf5f01636ee7cf658.jpg
    ├── iris-b005c82b844de575f0b972b9a1797b2b1fbe98c067c484a51006afc4f549ada4.jpg
    ├── iris-bfcf79b3b527eb64b78f9a068a1000042336e532f0f44e68f818dd13ab492a76.jpg
    ├── iris-c156236fb6e888764485e796f1f972bbc7ad960fe6330a7ce9182922046439c4.jpg
    ├── iris-d99d5fd2de5be1419cbd569570dbb6c9a6c8ec4f0a1ff5b55dc2607f6ecdca8f.jpg
    ├── iris-d9aae37a8fa6afdef2af170c266a597925eea935f4d070e979d565713ea62642.jpg
    ├── iris-dbc87fcecade2c070baaf99caf03f4f0f6e3aa977e34972383cb94d0efe8a95d.jpg
    ├── iris-e3d1a560d25cf573d2cbbf2fe6cd231819e998109a5cf1788d59fbb9859b3be2.jpg
    ├── iris-ec288bdad71388f907457db2476f12a5cb43c28cfa28d2a2077398a42b948a35.jpg
    ├── iris-ed5b4e072d43bc53a00a4a7f4d0f5d7c0cbd6a006e9c2d463128cedc956cb3de.jpg
    ├── iris-f3018a9440d17c265062d1c61475127f9952b6fe951d38fd7700402d706c0b01.jpg
    ├── iris-f47c5963cdbaa3238ba2d446848e8449c6af83e663f0a9216cf0baba8429b36f.jpg
    ├── iris-fa4b6d7e3617216104b1405cda21bf234840cd84a2c1966034caa63def2f64f0.jpg
    ├── iris-fc4b0cc65387ff78471659d14a78f0309a76f4c3ec641b871e40b40424255097.jpg
    └── meta.csv

Let’s create an artifact for the first sub-folder.

artifact = ln.Artifact("s3://lamindata/iris_studies/study0_raw_images").save()
artifact
artifact <- ln$Artifact("s3://lamindata/iris_studies/study0_raw_images")$save()
artifact
Hide code cell content
artifact = ln.Artifact("s3://lamindata/iris_studies/study0_raw_images").save()
artifact
Artifact(uid='suNjTN4tc3lvD1eK0000', is_latest=True, key='iris_studies/study0_raw_images', suffix='', size=658465, hash='IVKGMfNwi8zKvnpaD_gG7w', n_files=51, space_id=1, storage_id=2, run_id=1, created_by_id=1, created_at=2025-04-25 11:00:10 UTC)

As you see from path, the folder was merely registered in its present storage location without copying it.

artifact.path
artifact$path
Hide code cell content
artifact.path
S3QueryPath('s3://lamindata/iris_studies/study0_raw_images')

LaminDB keeps track of all your storage locations.

ln.Storage.df()
ln$Storage$df()
Hide code cell content
ln.Storage.df()
uid root description type region instance_uid space_id run_id created_at created_by_id _aux _branch_code
id
2 hMaCtXcKKBny s3://lamindata None s3 us-east-1 None 1 None 2025-04-25 11:00:10.629000+00:00 1 None 1
1 Pxmynucic82n /home/runner/work/lamin-docs/lamin-docs/docs/l... None local None 3MepSh2Col3I 1 None 2025-04-25 11:00:00.174000+00:00 1 None 1
How do I update or delete an artifact?
artifact.description = "My new description"  # change description
artifact.save()  # save the change to the database
artifact.delete()  # move to trash
artifact.delete(permanent=True)  # permanently delete
How do I create an artifact for a local file or folder?

Source path is local:

ln.Artifact("./my_data.fcs", key="my_data.fcs")
ln.Artifact("./my_images/", key="my_images")

Upon artifact.save(), the source path will be copied or uploaded into your instance’s current storage, visible & changeable via ln.settings.storage.

If the source path is remote or already in a registered storage location (one that’s registered in ln.Storage), artifact.save() will not trigger a copy or upload but register the existing path.

ln.Artifact("s3://my-bucket/my_data.fcs")  # key is auto-populated from S3, you can optionally pass a description
ln.Artifact("s3://my-bucket/my_images/")  # key is auto-populated from S3, you can optionally pass a description

You can use any storage location supported by `fsspec`.
Which fields are populated when creating an artifact record?

Basic fields:

  • uid: universal ID

  • key: a (virtual) relative path of the artifact in storage

  • description: an optional string description

  • storage: the storage location (the root, say, an S3 bucket or a local directory)

  • suffix: an optional file/path suffix

  • size: the artifact size in bytes

  • hash: a hash useful to check for integrity and collisions (is this artifact already stored?)

  • hash_type: the type of the hash

  • created_at: time of creation

  • updated_at: time of last update

Provenance-related fields:

  • created_by: the User who created the artifact

  • run: the Run of the Transform that created the artifact

For a full reference, see Artifact.

What exactly happens during save?

In the database: An artifact record is inserted into the Artifact registry. If the artifact record exists already, it’s returned.

In storage:

  • If the default storage is in the cloud, .save() triggers an upload for a local artifact.

  • If the artifact is already in a registered storage location, only the metadata of the record is saved to the artifact registry.

How does LaminDB compare to a AWS S3?

LaminDB provides a database on top of AWS S3 (or GCP storage, file systems, etc.).

Similar to organizing files with paths, you can organize artifacts using the key parameter of Artifact.

However, you’ll see that you can more conveniently query data by entities you care about: people, code, experiments, genes, proteins, cell types, etc.

Are artifacts aware of array-like data?

Yes.

You can make artifacts from paths referencing array-like objects:

ln.Artifact("./my_anndata.h5ad", key="my_anndata.h5ad")
ln.Artifact("./my_zarr_array/", key="my_zarr_array")

Or from in-memory objects:

ln.Artifact.from_df(df, key="my_dataframe.parquet")
ln.Artifact.from_anndata(adata, key="my_anndata.h5ad")

You can open large artifacts for slicing from the cloud or load small artifacts directly into memory via:

artifact.open()

Manage biological registries

Every bionty registry is based on configurable public ontologies (>20 of them) that are automatically leveraged during validation & annotation. Sometimes you want to access the public ontology directly.

import bionty as bt

cell_type_ontology = bt.CellType.public()
cell_type_ontology
Hide code cell output
PublicOntology
Entity: CellType
Organism: all
Source: cl, 2024-08-16
#terms: 2959

The returned object can be searched like you can search a registry.

cell_type_ontology.search("gamma-delta T cell").head(2)
Hide code cell output
name definition synonyms parents
ontology_id
CL:0000798 gamma-delta T cell A T Cell That Expresses A Gamma-Delta T Cell R... gamma-delta T-cell|gamma-delta T lymphocyte|ga... [CL:0000084]
CL:4033072 cycling gamma-delta T cell A(N) Gamma-Delta T Cell That Is Cycling. proliferating gamma-delta T cell [CL:4033069, CL:0000798]

Because you can’t update an external public ontology, you update the content of the corresponding registry. Here, you create a new cell type.

# create an ontology-coupled cell type record and save it
neuron = bt.CellType.from_source(name="neuron").save()

# create a record to track a new cell state
new_cell_state = bt.CellType(
    name="my neuron cell state", description="explains X"
).save()

# express that it's a neuron state
new_cell_state.parents.add(neuron)

# view ontological hierarchy
new_cell_state.view_parents(distance=2)
Hide code cell output
_images/8f9ed16972ab4f7fcc9549176de33247e2eb3f308e7778bd32d148c2df631926.svg

Manage AnnData objects

LaminDB supports a growing number of data structures: DataFrame, AnnData, MuData, SpatialData, and Tiledbsoma with their corresponding representations in storage.

Let’s go through the example of the quickstart, but store the dataset in an AnnData this time.

# define var schema
var_schema = ln.Schema(itype=bt.Gene.ensembl_gene_id, dtype=int).save()

# define composite schema
anndata_schema = ln.Schema(
    otype="AnnData", components={"obs": schema, "var": var_schema}
).save()

Validate & annotate an AnnData.

import anndata as ad

# store the dataset as an AnnData object to distinguish data from metadata
adata = ad.AnnData(df.iloc[:, :3], obs=df.iloc[:, 3:])

# save curated artifact
artifact = ln.Artifact.from_anndata(
    adata, key="my_datasets/my_rnaseq1.h5ad", schema=anndata_schema
).save()
artifact.describe()
Hide code cell output
 returning existing schema with same hash: Schema(uid='sQPu3DMJXP8DG3yRJv1M', n=8, itype='Feature', is_type=False, otype='DataFrame', hash='Qpsf-xPN693LEjzx6LkPiA', minimal_set=True, ordered_set=False, maximal_set=False, space_id=1, created_by_id=1, run_id=1, created_at=2025-04-25 11:00:08 UTC)
Artifact .h5ad/AnnData
├── General
│   ├── .uid = 'K3DEl1kEPDlRjzaI0000'
│   ├── .key = 'my_datasets/my_rnaseq1.h5ad'
│   ├── .size = 30232
│   ├── .hash = 'TWUlDi-V-Try1uCxWJ65nQ'
│   ├── .n_observations = 3
│   ├── .path = /home/runner/work/lamin-docs/lamin-docs/docs/lamin-intro/.lamindb/K3DEl1kEPDlRjzaI0000.h5ad
│   ├── .created_by = anonymous
│   ├── .created_at = 2025-04-25 11:00:14
│   └── .transform = 'Introduction'
├── Dataset features
│   ├── var3                     [bionty.Gene]                                                       
│   │   CD8A                        int                                                                 
│   │   CD4                         int                                                                 
│   │   CD14                        int                                                                 
│   └── obs8                     [Feature]                                                           
assay_oid                   cat[bionty.ExperimentalF…  single-cell RNA sequencing               
cell_type_by_expert         cat[bionty.CellType]       B cell, CD8-positive, alpha-beta T cell  
cell_type_by_model          cat[bionty.CellType]       B cell, T cell                           
perturbation                cat[ULabel]                DMSO, IFNG                               
donor                       str                                                                 
sample_note                 str                                                                 
concentration               str                                                                 
treatment_time_h            num                                                                 
└── Labels
    └── .cell_types                 bionty.CellType            T cell, B cell, CD8-positive, alpha-beta…
        .experimental_factors       bionty.ExperimentalFactor  single-cell RNA sequencing               
        .ulabels                    ULabel                     DMSO, IFNG                               

Because AnnData separates the high-dimensional count matrix that’s typically indexed with Ensembl gene ids from the metadata, we’re now working with two types of feature sets (bt.Gene for the counts and ln.Feature for the metadata). These correspond to the obs and the var schema in the anndata_schema.

If you want to find a dataset by whether it measured CD8A, you can do so as as follows.

# query for all feature sets that contain CD8A
feature_sets = ln.Schema.filter(genes__symbol="CD8A").all()

# query for all artifacts linked to these feature sets
ln.Artifact.filter(feature_sets__in=feature_sets).df()
Hide code cell output
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux _branch_code
id
4 K3DEl1kEPDlRjzaI0000 my_datasets/my_rnaseq1.h5ad None .h5ad dataset AnnData 30232 TWUlDi-V-Try1uCxWJ65nQ None 3 md5 True False 1 1 4 None True 1 2025-04-25 11:00:14.468000+00:00 1 None 1

Scale learning

How do you integrate new datasets with your existing datasets? Leverage Collection.

# a new dataset
df2 = ln.core.datasets.small_dataset2(otype="DataFrame")
adata = ad.AnnData(df2.iloc[:, :3], obs=df2.iloc[:, 3:])
artifact2 = ln.Artifact.from_anndata(
    adata, key="my_datasets/my_rnaseq2.h5ad", schema=anndata_schema
).save()

Create a collection using Collection.

collection = ln.Collection([artifact, artifact2], key="my-RNA-seq-collection").save()
collection.describe()
collection.view_lineage()
Hide code cell output
Collection 
└── General
    ├── .uid = 'rcGiJLRY1SAO0uqk0000'
    ├── .key = 'my-RNA-seq-collection'
    ├── .hash = 'diHtydJXZXAzmmM4xVyXsg'
    ├── .created_by = anonymous
    ├── .created_at = 2025-04-25 11:00:18
    └── .transform = 'Introduction'
_images/c10cf1a56e4bc4cfdbb9170b9d433d8cdf507e79dd68ae5db92c06bff413394b.svg
# if it's small enough, you can load the entire collection into memory as if it was one
collection.load()

# typically, it's too big, hence, open it for streaming (if the backend allows it)
# collection.open()

# or iterate over its artifacts
collection.artifacts.all()

# or look at a DataFrame listing the artifacts
collection.artifacts.df()
Hide code cell output
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux _branch_code
id
4 K3DEl1kEPDlRjzaI0000 my_datasets/my_rnaseq1.h5ad None .h5ad dataset AnnData 30232 TWUlDi-V-Try1uCxWJ65nQ None 3 md5 True False 1 1 4 None True 1 2025-04-25 11:00:14.468000+00:00 1 None 1
5 D2VxhK4dhkB9zoGs0000 my_datasets/my_rnaseq2.h5ad None .h5ad dataset AnnData 21224 HGR5w3RPp7HiFaM6wInRPw None 3 md5 True False 1 1 4 None True 1 2025-04-25 11:00:17.429000+00:00 1 None 1

Directly train models on collections of AnnData.

# to train models, batch iterate through the collection as if it was one array
from torch.utils.data import DataLoader, WeightedRandomSampler
dataset = collection.mapped(obs_keys=["cell_medium"])
sampler = WeightedRandomSampler(
    weights=dataset.get_label_weights("cell_medium"), num_samples=len(dataset)
)
data_loader = DataLoader(dataset, batch_size=2, sampler=sampler)
for batch in data_loader:
    pass

Read this blog post for more on training models on distributed datasets.