Track notebooks & scripts

This guide explains how to use track() & finish() to track notebook & scripts along with their inputs and outputs.

For tracking data lineage in pipelines, see Pipelines – workflow managers.

# !pip install 'lamindb[jupyter]'
!lamin init --storage ./test-track
Hide code cell output
 connected lamindb: testuser1/test-track

Track data lineage

Call track() to register a data transformation and start tracking inputs & outputs of a run. You will find your notebook or script in the Transform registry along with pipelines & functions. Run stores executions.

import lamindb as ln

# --> `ln.track()` generates a uid for your code
# --> `ln.track(uid)` initiates a tracked run
ln.track("9priar0hoE5u0000")

# your code

ln.finish()  # mark run as finished, save execution report, source code & environment

Below is how a notebook with run report looks on the hub.

Query & load a notebook or script

In the API, filter Transform to obtain a transform record:

transform = ln.Transform.get(name="Track notebooks & scripts")
transform.source_code  # source code
transform.latest_run.report  # report of latest run
transform.latest_run.environment  # environment of latest run
transform.runs  # all runs

On the hub, search or filter the transform page and then load a script or notebook on the CLI. For example,

lamin load https://lamin.ai/laminlabs/lamindata/transform/13VINnFk89PE0004

Sync scripts with GitHub

To sync with your git commit, add the following line to your script:

ln.settings.sync_git_repo = <YOUR-GIT-REPO-URL>
synced-with-git.py
import lamindb as ln

ln.settings.sync_git_repo = "https://github.com/..."
ln.track()
# your code
ln.finish()

You’ll now see the GitHub emoji clickable on the hub.


Track run parameters

LaminDB’s validation dialogue auto-generates code for run parameters. Here is an example:

import lamindb as ln

ln.Param(name="input_dir", dtype="str").save()
ln.Param(name="learning_rate", dtype="float").save()
ln.Param(name="preprocess_params", dtype="dict").save()
Hide code cell output
 connected lamindb: testuser1/test-track
Param(name='preprocess_params', dtype='dict', created_by_id=1, created_at=2024-12-20 15:03:02 UTC)
run-track-with-params.py
import argparse
import lamindb as ln

if __name__ == "__main__":
    p = argparse.ArgumentParser()
    p.add_argument("--input-dir", type=str)
    p.add_argument("--downsample", action="store_true")
    p.add_argument("--learning-rate", type=float)
    args = p.parse_args()
    params = {
        "input_dir": args.input_dir,
        "learning_rate": args.learning_rate,
        "preprocess_params": {
            "downsample": args.downsample,
            "normalization": "the_good_one",
        },
    }
    ln.track("JjRF4mACd9m00001", params=params)
    # your code
    ln.finish()

Run the script.

!python scripts/run-track-with-params.py  --input-dir ./mydataset --learning-rate 0.01 --downsample
Hide code cell output
 connected lamindb: testuser1/test-track
 created Transform('JjRF4mAC'), started new Run('LWk8zQEd') at 2024-12-20 15:03:06 UTC
→ params: input_dir='./mydataset' learning_rate='0.01' preprocess_params='{'downsample': True, 'normalization': 'the_good_one'}'
 finished Run('LWk8zQEd') after 0d 0h 0m 1s at 2024-12-20 15:03:08 UTC

Query by run parameters

Query for all runs that match a certain parameters:

ln.Run.params.filter(learning_rate=0.01, input_dir="./mydataset", preprocess_params__downsample=True).df()
Hide code cell output
uid started_at finished_at is_consecutive reference reference_type transform_id report_id environment_id parent_id created_at created_by_id
id
1 LWk8zQEdqOLpMYsxgBsA 2024-12-20 15:03:06.791121+00:00 2024-12-20 15:03:08.270030+00:00 True None None 1 None 1 None 2024-12-20 15:03:06.791176+00:00 1

Note that:

  • preprocess_params__downsample=True traverses the dictionary preprocess_params to find the key "downsample" and match it to True

  • nested keys like "downsample" in a dictionary do not appear in Param and hence, do not get validated

Below is how you get the parameter values that were used for a given run.

run = ln.Run.params.filter(learning_rate=0.01).order_by("-started_at").first()
run.params.get_values()
Hide code cell output
{'input_dir': './mydataset',
 'learning_rate': 0.01,
 'preprocess_params': {'downsample': True, 'normalization': 'the_good_one'}}

Or on the hub.

image

If you want to query all parameter values across all runs, use ParamValue.

ln.core.ParamValue.df(include=["param__name", "created_by__handle"])
Hide code cell output
value param_id created_at param__name created_by__handle
id
1 ./mydataset 1 2024-12-20 15:03:06.809949+00:00 input_dir testuser1
2 0.01 2 2024-12-20 15:03:06.810009+00:00 learning_rate testuser1
3 {'downsample': True, 'normalization': 'the_goo... 3 2024-12-20 15:03:06.810052+00:00 preprocess_params testuser1

Manage notebook templates

A notebook acts like a template upon using lamin load to load it. Consider you run:

lamin load https://lamin.ai/account/instance/transform/Akd7gx7Y9oVO0000

Upon running the returned notebook, you’ll automatically create a new version and be able to browse it via the version dropdown on the UI.

Additionally, you can:

  • label using ULabel, e.g., transform.ulabels.add(template_label)

  • tag with an indicative version string, e.g., transform.version = "T1"; transform.save()

Saving a notebook as an artifact

Sometimes you might want to save a notebook as an artifact. This is how you can do it:

lamin save template1.ipynb --key templates/template1.ipynb --description "Template for analysis type 1" --registry artifact
Hide code cell content
assert run.params.get_values() == {'input_dir': './mydataset', 'learning_rate': 0.01, 'preprocess_params': {'downsample': True, 'normalization': 'the_good_one'}}

# clean up test instance
!rm -r ./test-track
!lamin delete --force test-track
 deleting instance testuser1/test-track