scrna1/6 Jupyter Notebook lamindata

scRNA-seq

Here, you’ll learn how to manage a growing number of scRNA-seq datasets as a single queryable collection:

  1. create a dataset (an Artifact) and seed a Collection (scrna1/6)

  2. append a new dataset to the collection (scrna2/6)

  3. query & analyze individual datasets (scrna3/6)

  4. load the collection into memory (scrna4/6)

  5. iterate over the collection to train an ML model (scrna5/6)

  6. concatenate the collection to a single tiledbsoma array store (scrna6/6)

If you’re only interested in using a large curated scRNA-seq collection, see the CELLxGENE guide.

# pip install 'lamindb[jupyter,bionty]'
!lamin init --storage ./test-scrna --modules bionty
Hide code cell output
 initialized lamindb: testuser1/test-scrna
import lamindb as ln
import bionty as bt

ln.track("Nv48yAceNSh8")
Hide code cell output
 connected lamindb: testuser1/test-scrna
 created Transform('Nv48yAceNSh80000'), started new Run('R9fHTH3S...') at 2025-05-29 10:21:55 UTC
 notebook imports: bionty==1.4a1 lamindb==1.6a1

Populate metadata registries based on an artifact

Let us look at the standardized data of Conde et al., Science (2022), available from CELLxGENE. anndata_human_immune_cells() loads a subsampled version:

adata = ln.core.datasets.anndata_human_immune_cells()
adata
Hide code cell output
AnnData object with n_obs × n_vars = 1648 × 36503
    obs: 'donor', 'tissue', 'cell_type', 'assay'
    var: 'feature_is_filtered', 'feature_reference', 'feature_biotype'
    uns: 'default_embedding'
    obsm: 'X_umap'

To validate & annotate a dataset, we need to define valid features and a schema.

# define valid features
ln.Feature(name="donor", dtype=str).save()
ln.Feature(name="tissue", dtype=bt.Tissue).save()
ln.Feature(name="cell_type", dtype=bt.CellType).save()
ln.Feature(name="assay", dtype=bt.ExperimentalFactor).save()

# define a schema (or get via ln.examples.anndata.anndata_ensembl_gene_ids_and_valid_features_in_obs())
obs_schema = ln.Schema(
    itype=ln.Feature
).save()  # validate obs columns against the Feature registry
varT_schema = ln.Schema(
    itype=bt.Gene.ensembl_gene_id
).save()  # validate var.T columns against the Gene registry
schema = ln.Schema(
    name="anndata_ensembl_gene_ids_and_valid_features_in_obs",
    otype="AnnData",
    slots={"obs": obs_schema, "var.T": varT_schema},
).save()

Let’s attempt saving this dataset as a validated & annotated artifact.

try:
    artifact = ln.Artifact.from_anndata(adata, schema=schema).save()
except ln.errors.ValidationError as error:
    print(error)
Hide code cell output
! 1 term not validated in feature 'cell_type' in slot 'obs': 'animal cell'
    → fix typos, remove non-existent values, or save terms via: curator.slots['obs'].cat.add_new_from('cell_type')
1 term not validated in feature 'cell_type' in slot 'obs': 'animal cell'
    → fix typos, remove non-existent values, or save terms via: curator.slots['obs'].cat.add_new_from('cell_type')

One cell type isn’t validated because it’s not part of the CellType registry. Let’s create it.

bt.CellType(name="animal cell").save()
Hide code cell output
CellType(uid='2Go5sf8V', name='animal cell', branch_id=1, space_id=1, created_by_id=1, run_id=1, created_at=2025-05-29 10:22:00 UTC)

We can now save the dataset.

# runs ~10sec because it imports 40k Ensembl gene IDs from a public ontology
artifact = ln.Artifact.from_anndata(
    adata, key="datasets/conde22.h5ad", schema=schema
).save()
Hide code cell output
! 220 terms not validated in feature 'columns' in slot 'var.T': 'ENSG00000230699', 'ENSG00000241180', 'ENSG00000226849', 'ENSG00000272482', 'ENSG00000264443', 'ENSG00000242396', 'ENSG00000237352', 'ENSG00000269933', 'ENSG00000286863', 'ENSG00000285808', 'ENSG00000261737', 'ENSG00000230427', 'ENSG00000226822', 'ENSG00000273373', 'ENSG00000259834', 'ENSG00000224167', 'ENSG00000256374', 'ENSG00000234283', 'ENSG00000263464', 'ENSG00000203812', ...
    → fix typos, remove non-existent values, or save terms via: curator.slots['var.T'].cat.add_new_from('columns')
 not annotating with 36283 features for slot var.T as it exceeds 1000 (ln.settings.annotation.n_max_records)

Some Ensembl gene IDs don’t validate because they stem from an older version of Ensembl. If we wanted to be 100% sure that all gene identifiers are valid Ensembl IDs you can import the genes from an old Ensembl version into the Gene registry (see guide). One can also enforce this through the .var.T schema by setting schema.maximal_set=True, which will prohibit any non-valid features in the dataframe.

artifact.describe()
Hide code cell output
Artifact .h5ad/AnnData
├── General
│   ├── .uid = 'GKjaKEfWe5zX7uW00000'
│   ├── .key = 'datasets/conde22.h5ad'
│   ├── .size = 57612943
│   ├── .hash = 't_YJQpYrAyAGhs7Ir68zKj'
│   ├── .n_observations = 1648
│   ├── .path = /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna/.lamindb/GKjaKEfWe5zX7uW00000.h5ad
│   ├── .created_by = testuser1 (Test User1)
│   ├── .created_at = 2025-05-29 10:22:24
│   └── .transform = 'scRNA-seq'
├── Dataset features
│   ├── obs4                     [Feature]                                                           
│   │   assay                       cat[bionty.ExperimentalF…  10x 3' v3, 10x 5' v1, 10x 5' v2          
│   │   cell_type                   cat[bionty.CellType]       CD16-negative, CD56-bright natural kille…
│   │   tissue                      cat[bionty.Tissue]         blood, bone marrow, caecum, duodenum, il…
│   │   donor                       str                                                                 
│   └── var.T36283               [bionty.Gene.ensembl_gen…                                           
└── Labels
    └── .tissues                    bionty.Tissue              blood, thoracic lymph node, spleen, lung…
        .cell_types                 bionty.CellType            classical monocyte, T follicular helper …
        .experimental_factors       bionty.ExperimentalFactor  10x 3' v3, 10x 5' v2, 10x 5' v1          

Seed a collection

Let’s create a first version of a collection that will encompass many h5ad files when more data is ingested.

Note

To see the result of the incremental growth, take a look at the CELLxGENE Census guide for an instance with ~1k h5ads and ~50 million cells.

collection = ln.Collection(artifact, key="scrna/collection1").save()

For this version 1 of the collection, collection and artifact match each other. But they’re independently tracked and queryable through their registries:

collection.describe()
Hide code cell output
Collection 
└── General
    ├── .uid = '9NtDdfR9obBBu9mT0000'
    ├── .key = 'scrna/collection1'
    ├── .hash = 'DuyXxlMxwF92YehyBLbhKg'
    ├── .created_by = testuser1 (Test User1)
    ├── .created_at = 2025-05-29 10:22:24
    └── .transform = 'scRNA-seq'

Access the underlying artifacts like so:

collection.artifacts.df()
Hide code cell output
uid key description suffix kind otype size hash n_files n_observations _hash_type _key_is_virtual _overwrite_versions space_id storage_id schema_id version is_latest run_id created_at created_by_id _aux branch_id
id
1 GKjaKEfWe5zX7uW00000 datasets/conde22.h5ad None .h5ad dataset AnnData 57612943 t_YJQpYrAyAGhs7Ir68zKj None 1648 sha1-fl True False 1 1 3 None True 1 2025-05-29 10:22:24.262000+00:00 1 None 1

See data lineage:

collection.view_lineage()
_images/c380a4775c9cfe7fbb687b3b99058154701dd33547ff3cd1638f3079a9a4ee1a.svg

Finish the run and save the notebook.

ln.finish()
 finished Run('R9fHTH3S') after 30s at 2025-05-29 10:22:26 UTC