scrna1/6 Jupyter Notebook lamindata

scRNA-seq

Here, you’ll learn how to manage a growing number of scRNA-seq datasets as a single queryable collection:

  1. create a dataset (an Artifact) and seed a Collection (scrna1/6)

  2. append a new dataset to the collection (scrna2/6)

  3. query & analyze individual datasets (scrna3/6)

  4. load the collection into memory (scrna4/6)

  5. iterate over the collection to train an ML model (scrna5/6)

  6. concatenate the collection to a single tiledbsoma array store (scrna6/6)

If you’re only interested in using a large curated scRNA-seq collection, see the CELLxGENE guide.

# pip install 'lamindb[jupyter,bionty]'
!lamin init --storage ./test-scrna --modules bionty
Hide code cell output
 initialized lamindb: testuser1/test-scrna
import lamindb as ln
import bionty as bt

ln.track("Nv48yAceNSh8")
Hide code cell output
 connected lamindb: testuser1/test-scrna
 created Transform('Nv48yAceNSh80000', key='scrna.ipynb'), started new Run('ICysGrmVMvaGghvy') at 2025-10-30 18:59:40 UTC
 notebook imports: bionty==1.8.1 lamindb==1.15a1

Populate metadata registries based on an artifact

Let us look at the standardized data of Conde et al., Science (2022), available from CELLxGENE. anndata_human_immune_cells() loads a subsampled version:

adata = ln.core.datasets.anndata_human_immune_cells()
adata
Hide code cell output
AnnData object with n_obs × n_vars = 1648 × 36503
    obs: 'donor', 'tissue', 'cell_type', 'assay'
    var: 'feature_is_filtered', 'feature_reference', 'feature_biotype'
    uns: 'default_embedding'
    obsm: 'X_umap'

To validate & annotate a dataset, we need to define valid features and a schema.

# define valid features
ln.Feature(name="donor", dtype=str).save()
ln.Feature(name="tissue", dtype=bt.Tissue).save()
ln.Feature(name="cell_type", dtype=bt.CellType).save()
ln.Feature(name="assay", dtype=bt.ExperimentalFactor).save()

# define a schema (or get via ln.examples.anndata.anndata_ensembl_gene_ids_and_valid_features_in_obs())
obs_schema = ln.Schema(
    itype=ln.Feature
).save()  # validate obs columns against the Feature registry
varT_schema = ln.Schema(
    itype=bt.Gene.ensembl_gene_id
).save()  # validate var.T columns against the Gene registry
schema = ln.Schema(
    name="anndata_ensembl_gene_ids_and_valid_features_in_obs",
    otype="AnnData",
    slots={"obs": obs_schema, "var.T": varT_schema},
).save()

Let’s attempt saving this dataset as a validated & annotated artifact.

try:
    artifact = ln.Artifact.from_anndata(adata, schema=schema).save()
except ln.errors.ValidationError as error:
    print(error)
Hide code cell output
 writing the in-memory object into cache
 loading artifact into memory for validation
! 1 term not validated in feature 'cell_type' in slot 'obs': 'animal cell'
    → fix typos, remove non-existent values, or save terms via: curator.slots['obs'].cat.add_new_from('cell_type')
1 term not validated in feature 'cell_type' in slot 'obs': 'animal cell'
    → fix typos, remove non-existent values, or save terms via: curator.slots['obs'].cat.add_new_from('cell_type')

One cell type isn’t validated because it’s not part of the CellType registry. Let’s create it.

bt.CellType(name="animal cell").save()
Hide code cell output
CellType(uid='2Go5sf8V', name='animal cell', ontology_id=None, abbr=None, synonyms=None, description=None, branch_id=1, space_id=1, created_by_id=1, run_id=1, source_id=None, created_at=2025-10-30 18:59:44 UTC, is_locked=False)

We can now save the dataset.

# runs ~10sec because it imports 40k Ensembl gene IDs from a public ontology
artifact = ln.Artifact.from_anndata(
    adata, key="datasets/conde22.h5ad", schema=schema
).save()
Hide code cell output
 writing the in-memory object into cache
 loading artifact into memory for validation
 starting creation of 36283 Gene records in batches of 10000
! 220 terms not validated in feature 'columns' in slot 'var.T': 'ENSG00000230699', 'ENSG00000241180', 'ENSG00000226849', 'ENSG00000272482', 'ENSG00000264443', 'ENSG00000242396', 'ENSG00000237352', 'ENSG00000269933', 'ENSG00000286863', 'ENSG00000285808', 'ENSG00000261737', 'ENSG00000230427', 'ENSG00000226822', 'ENSG00000273373', 'ENSG00000259834', 'ENSG00000224167', 'ENSG00000256374', 'ENSG00000234283', 'ENSG00000263464', 'ENSG00000203812', ...
    → fix organism 'human', fix typos, remove non-existent values, or save terms via: curator.slots['var.T'].cat.add_new_from('columns')
 not annotating with 36283 features for slot var.T as it exceeds 1000 (ln.settings.annotation.n_max_records)

Some Ensembl gene IDs don’t validate because they stem from an older version of Ensembl. If we wanted to be 100% sure that all gene identifiers are valid Ensembl IDs you can import the genes from an old Ensembl version into the Gene registry (see ). One can also enforce this through the .var.T schema by setting schema.maximal_set=True, which will prohibit any non-valid features in the dataframe.

artifact.describe()
Hide code cell output
Artifact: datasets/conde22.h5ad (0000)
├── uid: oTuMP0V231DdGZBx0000            run: ICysGrm (scrna.ipynb)
kind: dataset                        otype: AnnData            
hash: t_YJQpYrAyAGhs7Ir68zKj         size: 54.9 MB             
branch: main                         space: all                
created_at: 2025-10-30 19:00:06 UTC  created_by: testuser1     
n_observations: 1648                                           
├── storage/path: 
/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna/.lamindb/oTuMP0V231DdGZBx0000.h5ad
├── Dataset features
├── obs (4)                                                                                                    
│   assay                           bionty.ExperimentalFactor          10x 3' v3, 10x 5' v1, 10x 5' v2         
│   cell_type                       bionty.CellType                    CD16-negative, CD56-bright natural kill…
│   tissue                          bionty.Tissue                      blood, bone marrow, caecum, duodenum, i…
│   donor                           str                                                                        
└── var.T (36283 bionty.Gene.ense…                                                                             
└── Labels
    └── .tissues                        bionty.Tissue                      blood, thoracic lymph node, spleen, lun…
        .cell_types                     bionty.CellType                    classical monocyte, T follicular helper…
        .experimental_factors           bionty.ExperimentalFactor          10x 3' v3, 10x 5' v2, 10x 5' v1         

Seed a collection

Let’s create a first version of a collection that will encompass many h5ad files when more data is ingested.

Note

To see the result of the incremental growth, take a look at the CELLxGENE Census guide for an instance with ~1k h5ads and ~50 million cells.

collection = ln.Collection(artifact, key="scrna/collection1").save()

For this version 1 of the collection, collection and artifact match each other. But they’re independently tracked and queryable through their registries:

collection.describe()
Hide code cell output
Collection: scrna/collection1 (0000)
└── uid: xkEvkoBw2y7KKrmA0000            run: ICysGrm (scrna.ipynb)
    branch: main                         space: all                
    created_at: 2025-10-30 19:00:06 UTC  created_by: testuser1     

Access the underlying artifacts like so:

collection.artifacts.to_dataframe()
Hide code cell output
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
1 oTuMP0V231DdGZBx0000 datasets/conde22.h5ad None .h5ad dataset AnnData 57612943 t_YJQpYrAyAGhs7Ir68zKj None 1648 None True False 2025-10-30 19:00:06.523000+00:00 1 1 1 1 3 1

See data lineage:

collection.view_lineage()
_images/4196eae3434169f6f66fbb0ca9da14f713a426b0fdce5b344c5dc1444881f07a.svg

Finish the run and save the notebook.

ln.finish()
 finished Run('ICysGrmVMvaGghvy') after 28s at 2025-10-30 19:00:08 UTC