Tutorial

LaminDB provides a framework to transform datasets into more useful representations: validated & queryable datasets, machine learning models, and analytical insights. The transformations can be notebooks, scripts, pipelines, or functions.

The metadata involved in this process are stored in a LaminDB instance, a database that manages datasets in storage. For the following walk through LaminDB’s core features, we’ll be working with a local instance.

Track a notebook or script

lamin init --storage ./lamin-tutorial --modules bionty
library(laminr)
lc <- import_module("lamin_cli")
lc$init(storage = "./lamin-tutorial", modules = "bionty")
Hide code cell content
!lamin init --storage ./lamindb-tutorial --modules bionty
 initialized lamindb: anonymous/lamindb-tutorial
What else can I configure during setup?
  1. You can pass a cloud storage location to --storage (S3, GCP, R2, HF, etc.)

    --storage s3://my-bucket
    
  2. Instead of the default SQLite database pass a Postgres connection string to --db:

    --db postgresql://<user>:<pwd>@<hostname>:<port>/<dbname>
    
  3. Instead of a default instance name derived from the storage location, provide a custom name:

    --name my-name
    
  4. Mount additional schema modules:

    --modules bionty,wetlab,custom1
    

For more info, see Install & setup.

If you decide to connect your instance to the hub, you will see data & metadata in a UI.

Let’s now track the notebook that’s being run.

import lamindb as ln

ln.track()  # track the current notebook or script
library(laminr)
ln <- import_module("lamindb")  # instantiate the central `ln` object of the API

ln$track()  # track a run of your notebook or script
Hide code cell content
import lamindb as ln

ln.track()  # track the current notebook or script
 connected lamindb: anonymous/lamindb-tutorial
 created Transform('Dlyds3zetI5b0000', key='tutorial.ipynb'), started new Run('0NDdAcEdCctSdsGn') at 2025-11-14 11:41:57 UTC
 notebook imports: anndata==0.12.5 bionty==1.9.1 lamindb==1.16.2
 recommendation: to identify the notebook across renames, pass the uid: ln.track("Dlyds3zetI5b")

By calling track(), the notebook gets automatically linked as the source of all data that’s about to be saved! You can see all your transforms and their runs in the Transform and Run registries.

ln.Transform.to_dataframe()
ln$Transform$df()
Hide code cell content
ln.Transform.to_dataframe()
uid key description type source_code hash reference reference_type version is_latest is_locked created_at branch_id space_id created_by_id _template_id
id
1 Dlyds3zetI5b0000 tutorial.ipynb Tutorial notebook None None None None None True False 2025-11-14 11:41:57.785000+00:00 1 1 1 None
ln.Run.to_dataframe()
ln$Run$df()
Hide code cell content
ln.Run.to_dataframe()
uid name started_at finished_at params reference reference_type is_locked created_at branch_id space_id transform_id report_id _logfile_id environment_id created_by_id initiated_by_run_id
id
1 0NDdAcEdCctSdsGn None 2025-11-14 11:41:57.789857+00:00 None None None None False 2025-11-14 11:41:57.790000+00:00 1 1 1 None None None 1 None
What happened under the hood?
  1. The full run environment and imported package versions of current notebook were detected

  2. Notebook metadata was detected and stored in a Transform record with a unique id

  3. Run metadata was detected and stored in a Run record with a unique id

The Transform registry stores data transformations: scripts, notebooks, pipelines, functions.

The Run registry stores executions of transforms. Many runs can be linked to the same transform if executed with different context (time, user, input data, etc.).

How do I track a pipeline instead of a notebook?

Leverage a pipeline integration, see: /pipelines. Or manually add code as seen below.

transform = ln.Transform(name="My pipeline")
transform.version = "1.2.0"  # tag the version
ln.track(transform)
Why should I care about tracking notebooks?

Because of interactivity & humans are in the loop, most mistakes happen when using notebooks.

track() makes notebooks & derived results reproducible & auditable, enabling to learn from mistakes.

This is important as much insight generated from biological data is driven by computational biologists interacting with it. An early blog post on this is here.

Is this compliant with OpenLineage?

Yes. What OpenLineage calls a “job”, LaminDB calls a “transform”. What OpenLineage calls a “run”, LaminDB calls a “run”.

Manage artifacts

The Artifact class manages datasets & models that are stored as files, folders, or arrays. Artifact is a registry to manage search, queries, validation & storage access.

You can register data objects (DataFrame, AnnData, …) and files or folders in local storage, AWS S3 (s3://), Google Cloud (gs://), Hugging Face (hf://), or any other file system supported by fsspec.

Create an artifact

Let’s first look at an exemplary dataframe.

df = ln.examples.datasets.mini_immuno.get_dataset1(with_typo=True)
df
df <- ln$core$datasets$mini_immuno$get_dataset1(otype = "DataFrame", with_typo = TRUE)
df
Hide code cell content
df = ln.examples.datasets.mini_immuno.get_dataset1(with_typo=True)
df
ENSG00000153563 ENSG00000010610 ENSG00000170458 perturbation sample_note cell_type_by_expert cell_type_by_model assay_oid concentration treatment_time_h donor donor_ethnicity
sample1 1 3 5 DMSO was ok B cell B cell EFO:0008913 0.1% 24 D0001 [Chinese, Singaporean Chinese]
sample2 2 4 6 IFNJ looks naah CD8-positive, alpha-beta T cell T cell EFO:0008913 200 nM 24 D0002 [Chinese, Han Chinese]
sample3 3 5 7 DMSO pretty! 🤩 CD8-positive, alpha-beta T cell T cell EFO:0008913 0.1% 6 None [Chinese]

This is how you create an artifact from a dataframe.

artifact = ln.Artifact.from_dataframe(df, key="my_datasets/rnaseq1.parquet").save()  # create & save
artifact.describe()  # describe
artifact <- ln$Artifact$from_dataframe(df, key = "my_datasets/rnaseq1.parquet")$save()  # create & save
artifact$describe()  # describe
Hide code cell content
artifact = ln.Artifact.from_dataframe(df, key="my_datasets/rnaseq1.parquet").save()
artifact.describe()
 writing the in-memory object into cache
Artifact: my_datasets/rnaseq1.parquet (0000)
├── uid: MKDxZXP4LNmKxFYl0000            run: 0NDdAcE (tutorial.ipynb)
kind: dataset                        otype: DataFrame             
hash: GcJ1rNzrCi3V98GQmSpsXg         size: 10.1 KB                
branch: main                         space: all                   
created_at: 2025-11-14 11:41:58 UTC  created_by: anonymous        
n_observations: 3                                                 
└── storage/path: 
    /home/runner/work/lamin-docs/lamin-docs/docs/lamindb-tutorial/.lamindb/MKDxZXP4LNmKxFYl0000.parquet

Access artifacts

Get the artifact by key.

artifact = ln.Artifact.get(key="my_datasets/rnaseq1.parquet")
artifact <- ln$Artifact$get(key = "my_datasets/rnaseq1.parquet")
Hide code cell content
artifact = ln.Artifact.get(key="my_datasets/rnaseq1.parquet")

And this is how you load it back into memory.

artifact.load()
artifact$load()
Hide code cell content
artifact.load()
ENSG00000153563 ENSG00000010610 ENSG00000170458 perturbation sample_note cell_type_by_expert cell_type_by_model assay_oid concentration treatment_time_h donor donor_ethnicity
sample1 1 3 5 DMSO was ok B cell B cell EFO:0008913 0.1% 24 D0001 [Chinese, Singaporean Chinese]
sample2 2 4 6 IFNJ looks naah CD8-positive, alpha-beta T cell T cell EFO:0008913 200 nM 24 D0002 [Chinese, Han Chinese]
sample3 3 5 7 DMSO pretty! 🤩 CD8-positive, alpha-beta T cell T cell EFO:0008913 0.1% 6 None [Chinese]

Typically your artifact is in a cloud storage location. To get a local file path to it, call cache().

artifact.cache()
artifact$cache()
Hide code cell content
artifact.cache()
PosixUPath('/home/runner/work/lamin-docs/lamin-docs/docs/lamindb-tutorial/.lamindb/MKDxZXP4LNmKxFYl0000.parquet')

If the data is large, you might not want to cache but stream it via open(). For more on this, see: Slice & stream arrays.

Trace data lineage

You can understand where an artifact comes from by looking at its Transform & Run records.

artifact.transform
artifact$transform
Hide code cell content
artifact.transform
Transform(uid='Dlyds3zetI5b0000', version=None, is_latest=True, key='tutorial.ipynb', description='Tutorial', type='notebook', hash=None, reference=None, reference_type=None, branch_id=1, space_id=1, created_by_id=1, created_at=2025-11-14 11:41:57 UTC, is_locked=False)
artifact.run
artifact$run
Hide code cell content
artifact.run
Run(uid='0NDdAcEdCctSdsGn', name=None, started_at=2025-11-14 11:41:57 UTC, finished_at=None, params=None, reference=None, reference_type=None, branch_id=1, space_id=1, transform_id=1, report_id=None, environment_id=None, created_by_id=1, initiated_by_run_id=None, created_at=2025-11-14 11:41:57 UTC, is_locked=False)

Or visualize deeper data lineage with the view_lineage() method. Here we’re only one step deep.

artifact.view_lineage()
artifact$view_lineage()
Hide code cell content
artifact.view_lineage()
! calling anonymously, will miss private instances
_images/6648d40da1a469de205684abe5615ea7d260f9d7a52a7029f49617e5754db218.svg
Show me a more interesting example, please!

Explore and load the notebook from here.

Explore data lineage interactively here.

Once you’re done, at the end of your notebook or script, call finish(). Here, we’re not yet done so we’re commenting it out.

# ln.finish()  # mark run as finished, save execution report, source code & environment
# ln$finish()  # mark run as finished, save execution report & source code

If you did not use RStudio’s notebook mode, you have to render an HTML externally.

  1. Render the notebook to HTML via one of:

    • In RStudio, click the “Knit” button

    • From the command line, run

      Rscript -e 'rmarkdown::render("tutorial.Rmd")'
      
    • Use the rmarkdown package in R

      rmarkdown::render("tutorial.Rmd")
      
  2. Save it to your LaminDB instance via one of:

    • Using the save() command in the lamin_cli module from R

      lc <- import_module("lamin_cli")
      lc$save("tutorial.Rmd")
      
    • Using the lamin CLI

      lamin save tutorial.Rmd
      
Here is how a notebook looks on the hub.

To create a new version of a notebook or script, run lamin load on the terminal, e.g.,

$ lamin load https://lamin.ai/laminlabs/lamindata/transform/13VINnFk89PE0004
→ notebook is here: mcfarland_2020_preparation.ipynb

Note that data lineage also helps to understand what a dataset is being used for, not only where it comes from. Many datasets are being used over and over for different purposes and it’s often useful to understand how.

Annotate an artifact

You can annotate artifacts with features and labels. Features are measurement dimensions (e.g. "organism", "temperature") and labels are measured categories (e.g. "human", "mouse").

Let’s annotate an artifact with a Record, a built-in universal label ontology.

# create a label
my_experiment = ln.Record(name="My experiment").save()

# annotate the artifact with a label
artifact.records.add(my_experiment)

# describe the artifact
artifact.describe()
# create a label
my_experiment <- ln$Record(name = "My experiment")$save()

# annotate the artifact with a label
artifact$records$add(my_experiment)

# describe the artifact
artifact$describe()
Hide code cell content
# create & save a record
my_experiment = ln.Record(name="My experiment").save()

# annotate the artifact with a record
artifact.records.add(my_experiment)

# describe the artifact
artifact.describe()
Artifact: my_datasets/rnaseq1.parquet (0000)
├── uid: MKDxZXP4LNmKxFYl0000            run: 0NDdAcE (tutorial.ipynb)
kind: dataset                        otype: DataFrame             
hash: GcJ1rNzrCi3V98GQmSpsXg         size: 10.1 KB                
branch: main                         space: all                   
created_at: 2025-11-14 11:41:58 UTC  created_by: anonymous        
n_observations: 3                                                 
├── storage/path: 
/home/runner/work/lamin-docs/lamin-docs/docs/lamindb-tutorial/.lamindb/MKDxZXP4LNmKxFYl0000.parquet
└── Labels
    └── .records                        Record                             My experiment                           

This is how you query artifacts based on the annotation.

ln.Artifact.filter(records=my_experiment).to_dataframe()
ln$Artifact$filter(records = my_experiment)$df()
Hide code cell content
ln.Artifact.filter(records=my_experiment).to_dataframe()
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
1 MKDxZXP4LNmKxFYl0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 GcJ1rNzrCi3V98GQmSpsXg None 3 None True False 2025-11-14 11:41:58.367000+00:00 1 1 1 1 None 1

You can also annotate with labels from other registries, e.g., the biological ontologies in bionty.

import bionty as bt

# create a cell type label from the source ontology
cell_type = bt.CellType.from_source(name="effector T cell").save()

# annotate the artifact with a cell type
artifact.cell_types.add(cell_type)

# describe the artifact
artifact.describe()
bt <- import_module("bionty")

# create a cell type label from the source ontology
cell_type <- bt$CellType$from_source(name = "effector T cell")$save()

# annotate the artifact with a cell type
artifact$cell_types$add(cell_type)

# describe the artifact
artifact$describe()
Hide code cell content
import bionty as bt

# create a cell type label from the source ontology
cell_type = bt.CellType.from_source(name="effector T cell").save()

# annotate the artifact with a cell type
artifact.cell_types.add(cell_type)

# describe the artifact
artifact.describe()
Artifact: my_datasets/rnaseq1.parquet (0000)
├── uid: MKDxZXP4LNmKxFYl0000            run: 0NDdAcE (tutorial.ipynb)
kind: dataset                        otype: DataFrame             
hash: GcJ1rNzrCi3V98GQmSpsXg         size: 10.1 KB                
branch: main                         space: all                   
created_at: 2025-11-14 11:41:58 UTC  created_by: anonymous        
n_observations: 3                                                 
├── storage/path: 
/home/runner/work/lamin-docs/lamin-docs/docs/lamindb-tutorial/.lamindb/MKDxZXP4LNmKxFYl0000.parquet
└── Labels
    └── .records                        Record                             My experiment                           
        .cell_types                     bionty.CellType                    effector T cell                         

This is how you query artifacts by cell type annotations.

ln.Artifact.filter(cell_types=cell_type).to_dataframe()
ln$Artifact$filter(cell_types = cell_type)$df()
Hide code cell content
ln.Artifact.filter(cell_types=cell_type).to_dataframe()
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
1 MKDxZXP4LNmKxFYl0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 GcJ1rNzrCi3V98GQmSpsXg None 3 None True False 2025-11-14 11:41:58.367000+00:00 1 1 1 1 None 1

If you want to annotate by non-categorical metadata or indicate the feature for a label, annotate via features.

# define the "temperature" & "experiment" features
ln.Feature(name="temperature", dtype=float).save()
ln.Feature(name="experiment", dtype=ln.Record).save()

# annotate the artifact
artifact.features.add_values({"temperature": 21.6, "experiment": "My experiment"})

# describe the artifact
artifact.describe()
# define the "temperature" & "experiment" features
ln$Feature(name = "temperature", dtype = "float")$save()
ln$Feature(name = "experiment", dtype = ln$Record)$save()

# annotate the artifact
artifact$features$add_values(
  list(temperature = 21.6, experiment = "My experiment")
)

# describe the artifact
artifact$describe()
Hide code cell content
# define the "temperature" & "experiment" features
ln.Feature(name="temperature", dtype=float).save()
ln.Feature(name="experiment", dtype=ln.Record).save()

# annotate the artifact
artifact.features.add_values({"temperature": 21.6, "experiment": "My experiment"})

# describe the artifact
artifact.describe()
Artifact: my_datasets/rnaseq1.parquet (0000)
├── uid: MKDxZXP4LNmKxFYl0000            run: 0NDdAcE (tutorial.ipynb)
kind: dataset                        otype: DataFrame             
hash: GcJ1rNzrCi3V98GQmSpsXg         size: 10.1 KB                
branch: main                         space: all                   
created_at: 2025-11-14 11:41:58 UTC  created_by: anonymous        
n_observations: 3                                                 
├── storage/path: 
/home/runner/work/lamin-docs/lamin-docs/docs/lamindb-tutorial/.lamindb/MKDxZXP4LNmKxFYl0000.parquet
├── Features
└── experiment                      Record                             My experiment                           
    temperature                     float                              21.6                                    
└── Labels
    └── .records                        Record                             My experiment                           
        .cell_types                     bionty.CellType                    effector T cell                         

This is how you query artifacts by features.

ln.Artifact.filter(temperature=21.6).to_dataframe()
ln$Artifact$filter(temperature = 21.6)$df()
Hide code cell content
ln.Artifact.filter(temperature=21.6).to_dataframe()
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
1 MKDxZXP4LNmKxFYl0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 GcJ1rNzrCi3V98GQmSpsXg None 3 None True False 2025-11-14 11:41:58.367000+00:00 1 1 1 1 None 1

Validate an artifact

Validated datasets are more re-usable by analysts and machine learning models. You can define what a valid artifact should look like by defining a schema.

In lamindb, validation also means annotation with the validated metadata which increases the findability of a dataset.

Can you give me examples for what findability and usability means?
  1. Findability: Which datasets measured expression of cell marker CD14? Which characterized cell line K562? Which have a test & train split? Etc.

  2. Usability: Are there typos in feature names? Are there typos in labels? Are types and units of features consistent? Etc.

import bionty as bt  # <-- use bionty to access registries with imported public ontologies

# define a few more valid labels
ln.Record(name="DMSO").save()
ln.Record(name="IFNG").save()

# define a few more valid features
ln.Feature(name="perturbation", dtype=ln.Record).save()
ln.Feature(name="cell_type_by_model", dtype=bt.CellType).save()
ln.Feature(name="cell_type_by_expert", dtype=bt.CellType).save()
ln.Feature(name="assay_oid", dtype=bt.ExperimentalFactor.ontology_id).save()
ln.Feature(name="donor", dtype=str, nullable=True).save()
ln.Feature(name="concentration", dtype=str).save()
ln.Feature(name="treatment_time_h", dtype="num", coerce_dtype=True).save()

# define a schema that merely enforces a feature identifier type
schema = ln.Schema(itype=ln.Feature).save()
bt <- import_module("bionty")  # <-- use bionty to access registries with imported public ontologies

# define a few more valid labels
ln$Record(name = "DMSO")$save()
ln$Record(name = "IFNG")$save()

# define a few more valid features
ln$Feature(name = "perturbation", dtype = ln$Record)$save()
ln$Feature(name = "cell_type_by_model", dtype = bt$CellType)$save()
ln$Feature(name = "cell_type_by_expert", dtype = bt$CellType)$save()
ln$Feature(name = "assay_oid", dtype = bt$ExperimentalFactor$ontology_id)$save()
ln$Feature(name = "donor", dtype = "str", nullable = TRUE)$save()
ln$Feature(name = "concentration", dtype = "str")$save()
ln$Feature(name = "treatment_time_h", dtype = "num", coerce_dtype = TRUE)$save()

# define a schema that merely enforces a feature identifier type
schema <- ln$Schema(itype = ln$Feature)$save()
Hide code cell content
import bionty as bt  # <-- use bionty to access registries with imported public ontologies

# define a few more valid labels
ln.Record(name="DMSO").save()
ln.Record(name="IFNG").save()

# define a few more valid features
ln.Feature(name="perturbation", dtype=ln.Record).save()
ln.Feature(name="cell_type_by_model", dtype=bt.CellType).save()
ln.Feature(name="cell_type_by_expert", dtype=bt.CellType).save()
ln.Feature(name="assay_oid", dtype=bt.ExperimentalFactor.ontology_id).save()
ln.Feature(name="donor", dtype=str, nullable=True).save()
ln.Feature(name="sample_note", dtype=str, nullable=True).save()
ln.Feature(name="concentration", dtype=str).save()
ln.Feature(name="treatment_time_h", dtype="num", coerce_dtype=True).save()

# define a schema that merely enforces a feature identifier type
schema = ln.Schema(itype=ln.Feature).save()

If you pass a schema object to the Artifact constructor, the artifact will be validated & annotated. Let’s try this.

artifact = ln.Artifact.from_dataframe(df, key="my_datasets/rnaseq1.parquet", schema=schema)
artifact <- ln$Artifact$from_dataframe(df, key = "my_datasets/rnaseq1.parquet", schema = schema)
Hide code cell content
try:
    artifact = ln.Artifact.from_dataframe(
        df, key="my_datasets/rnaseq1.parquet", schema=schema
    )
except ln.errors.ValidationError as error:
    print(str(error))
 writing the in-memory object into cache
 returning artifact with same hash: Artifact(uid='MKDxZXP4LNmKxFYl0000', version=None, is_latest=True, key='my_datasets/rnaseq1.parquet', description=None, suffix='.parquet', kind='dataset', otype='DataFrame', size=10354, hash='GcJ1rNzrCi3V98GQmSpsXg', n_files=None, n_observations=3, branch_id=1, space_id=1, storage_id=1, run_id=1, schema_id=None, created_by_id=1, created_at=2025-11-14 11:41:58 UTC, is_locked=False); to track this artifact as an input, use: ln.Artifact.get()
 loading artifact into memory for validation
! 4 terms not validated in feature 'columns': 'ENSG00000153563', 'ENSG00000010610', 'ENSG00000170458', 'donor_ethnicity'
    → fix typos, remove non-existent values, or save terms via: curator.cat.add_new_from('columns')
! 1 term not validated in feature 'perturbation': 'IFNJ'
    → fix typos, remove non-existent values, or save terms via: curator.cat.add_new_from('perturbation')
1 term not validated in feature 'perturbation': 'IFNJ'
    → fix typos, remove non-existent values, or save terms via: curator.cat.add_new_from('perturbation')

Because there is a typo in the perturbation column, validation fails. Let’s fix it by making a new version.

Make a new version of an artifact

# fix the "IFNJ" typo
df["perturbation"] = df["perturbation"].cat.rename_categories({"IFNJ": "IFNG"})

# create a new version
artifact = ln.Artifact.from_dataframe(df, key="my_datasets/rnaseq1.parquet", schema=schema).save()

# see the annotations
artifact.describe()

# simplest way to check that artifact was validated
artifact.schema

# see all versions of the artifact
artifact.versions.to_dataframe()
# fix the "IFNJ" typo
levels(df$perturbation) <- c("DMSO", "IFNG")
df["sample2", "perturbation"] <- "IFNG"

# create a new version
artifact <- ln$Artifact$from_dataframe(df, key = "my_datasets/rnaseq1.parquet", schema = schema)$save()

# see the annotations
artifact$describe()

# simplest way to check that artifact was validated
artifact$schema

# see all versions of an artifact
artifact$versions$df()
Hide code cell content
# fix the "IFNJ" typo
df["perturbation"] = df["perturbation"].cat.rename_categories({"IFNJ": "IFNG"})

# create a new version
artifact = ln.Artifact.from_dataframe(
    df, key="my_datasets/rnaseq1.parquet", schema=schema
).save()

# see the annotations
artifact.describe()

# see all versions of the artifact
artifact.versions.to_dataframe()
 writing the in-memory object into cache
 creating new artifact version for key 'my_datasets/rnaseq1.parquet' in storage '/home/runner/work/lamin-docs/lamin-docs/docs/lamindb-tutorial'
 loading artifact into memory for validation
! 4 terms not validated in feature 'columns': 'ENSG00000153563', 'ENSG00000010610', 'ENSG00000170458', 'donor_ethnicity'
    → fix typos, remove non-existent values, or save terms via: curator.cat.add_new_from('columns')
Artifact: my_datasets/rnaseq1.parquet (0001)
├── uid: MKDxZXP4LNmKxFYl0001            run: 0NDdAcE (tutorial.ipynb)
kind: dataset                        otype: DataFrame             
hash: ug6ICnjB8oyqescoUDbYKg         size: 10.1 KB                
branch: main                         space: all                   
created_at: 2025-11-14 11:42:03 UTC  created_by: anonymous        
n_observations: 3                                                 
├── storage/path: 
/home/runner/work/lamin-docs/lamin-docs/docs/lamindb-tutorial/.lamindb/MKDxZXP4LNmKxFYl0001.parquet
├── Dataset features
└── columns (8)                                                                                                
    assay_oid                       bionty.ExperimentalFactor.ontolo…  EFO:0008913                             
    cell_type_by_expert             bionty.CellType                    B cell, CD8-positive, alpha-beta T cell 
    cell_type_by_model              bionty.CellType                    B cell, T cell                          
    perturbation                    Record                             DMSO, IFNG                              
    donor                           str                                                                        
    sample_note                     str                                                                        
    concentration                   str                                                                        
    treatment_time_h                num                                                                        
└── Labels
    └── .records                        Record                             DMSO, IFNG                              
        .cell_types                     bionty.CellType                    T cell, B cell, CD8-positive, alpha-bet…
        .experimental_factors           bionty.ExperimentalFactor          single-cell RNA sequencing              
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
2 MKDxZXP4LNmKxFYl0001 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 ug6ICnjB8oyqescoUDbYKg None 3 None True False 2025-11-14 11:42:03.557000+00:00 1 1 1 1 1.0 1
1 MKDxZXP4LNmKxFYl0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 GcJ1rNzrCi3V98GQmSpsXg None 3 None False False 2025-11-14 11:41:58.367000+00:00 1 1 1 1 NaN 1

The content of the dataset is now validated and the dataset is richly annotated and queryable by all entities that you defined.

Can I also create new versions without passing key?

That works, too, you can use revises:

artifact_v1 = ln.Artifact.from_dataframe(df, description="Just a description").save()
# below revises artifact_v1
artifact_v2 = ln.Artifact.from_dataframe(df_updated, revises=artifact_v1).save()

The good thing about passing revises: Artifact is that you don’t need to worry about coming up with naming conventions for paths.

The good thing about versioning based on key is that it’s how all data versioning tools are doing it.

Query & search registries

We’ve already seen a few queries. Let’s now walk through the topic systematically.

To get an overview over all artifacts in your instance, call df.

ln.Artifact.to_dataframe()
ln$Artifact$df()
Hide code cell content
ln.Artifact.to_dataframe()
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
2 MKDxZXP4LNmKxFYl0001 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 ug6ICnjB8oyqescoUDbYKg None 3 None True False 2025-11-14 11:42:03.557000+00:00 1 1 1 1 1.0 1
1 MKDxZXP4LNmKxFYl0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 GcJ1rNzrCi3V98GQmSpsXg None 3 None False False 2025-11-14 11:41:58.367000+00:00 1 1 1 1 NaN 1

The Artifact registry additionally supports seeing all feature annotations of an artifact.

ln.Artifact.to_dataframe(features=True)
ln$Artifact$df(features = TRUE)
Hide code cell content
ln.Artifact.to_dataframe(features=True)
 queried for all categorical features with dtype Record and non-categorical features: (7) ['temperature', 'experiment', 'perturbation', 'donor', 'sample_note', 'concentration', 'treatment_time_h']
uid key temperature experiment perturbation
id
2 MKDxZXP4LNmKxFYl0001 my_datasets/rnaseq1.parquet NaN NaN {IFNG, DMSO}
1 MKDxZXP4LNmKxFYl0000 my_datasets/rnaseq1.parquet 21.6 My experiment NaN

LaminDB’s central classes are registries that store records (SQLRecord objects). If you want to see the fields of a registry, look at the class or auto-complete.

ln.Artifact
ln$Artifact
Hide code cell content
ln.Artifact
Artifact
  Simple fields
    .uid: CharField
    .key: CharField
    .description: TextField
    .suffix: CharField
    .kind: CharField
    .otype: CharField
    .size: BigIntegerField
    .hash: CharField
    .n_files: BigIntegerField
    .n_observations: BigIntegerField
    .version: CharField
    .is_latest: BooleanField
    .is_locked: BooleanField
    .created_at: DateTimeField
    .updated_at: DateTimeField
  Relational fields
    .branch: Branch
    .space: Space
    .storage: Storage
    .run: Run
    .schema: Schema
    .created_by: User
    .input_of_runs: Run
    .feature_sets: Schema
    .linked_in_records: Record
    .users: User
    .ulabels: ULabel
    .collections: Collection
    .records: Record
    .references: Reference
    .projects: Project
    .blocks: Block
  Bionty fields
    .organisms: bionty.Organism
    .genes: bionty.Gene
    .proteins: bionty.Protein
    .cell_markers: bionty.CellMarker
    .tissues: bionty.Tissue
    .cell_types: bionty.CellType
    .diseases: bionty.Disease
    .cell_lines: bionty.CellLine
    .phenotypes: bionty.Phenotype
    .pathways: bionty.Pathway
    .experimental_factors: bionty.ExperimentalFactor
    .developmental_stages: bionty.DevelopmentalStage
    .ethnicities: bionty.Ethnicity

Each registry is a table in the relational schema of the underlying database. With view(), you can see the latest records in the database.

ln.view()
ln$view()
Hide code cell content
ln.view()
****************
* module: core *
****************
Artifact
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
2 MKDxZXP4LNmKxFYl0001 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 ug6ICnjB8oyqescoUDbYKg None 3 None True False 2025-11-14 11:42:03.557000+00:00 1 1 1 1 1.0 1
1 MKDxZXP4LNmKxFYl0000 my_datasets/rnaseq1.parquet None .parquet dataset DataFrame 10354 GcJ1rNzrCi3V98GQmSpsXg None 3 None False False 2025-11-14 11:41:58.367000+00:00 1 1 1 1 NaN 1
Feature
uid name dtype is_type unit description array_rank array_size array_shape proxy_dtype synonyms is_locked created_at branch_id space_id created_by_id run_id type_id
id
10 B8pvfNRDlagD treatment_time_h num None None None 0 0 None None None False 2025-11-14 11:42:00.917000+00:00 1 1 1 1 None
9 vmiQ6ygoLjRA concentration str None None None 0 0 None None None False 2025-11-14 11:42:00.914000+00:00 1 1 1 1 None
8 uccWpJTFTKCp sample_note str None None None 0 0 None None None False 2025-11-14 11:42:00.910000+00:00 1 1 1 1 None
7 wgnozDogmzdG donor str None None None 0 0 None None None False 2025-11-14 11:42:00.906000+00:00 1 1 1 1 None
6 yAO6Nxb3yDww assay_oid cat[bionty.ExperimentalFactor.ontology_id] None None None 0 0 None None None False 2025-11-14 11:42:00.903000+00:00 1 1 1 1 None
5 8aeU2uUUZk7y cell_type_by_expert cat[bionty.CellType] None None None 0 0 None None None False 2025-11-14 11:42:00.899000+00:00 1 1 1 1 None
4 ioA74uyd9kLh cell_type_by_model cat[bionty.CellType] None None None 0 0 None None None False 2025-11-14 11:42:00.895000+00:00 1 1 1 1 None
FeatureValue
value hash is_locked created_at branch_id space_id created_by_id run_id feature_id
id
1 21.6 XftFE5byhwPHY-11WjfNAw False 2025-11-14 11:42:00.816000+00:00 1 1 1 1 1
Record
uid name is_type description reference reference_type is_locked created_at branch_id space_id created_by_id type_id schema_id run_id
id
3 KBAG3yQ13jDWTSjN IFNG False None None None False 2025-11-14 11:42:00.887000+00:00 1 1 1 None None 1
2 C3dmEGNPV6rqv0Bd DMSO False None None None False 2025-11-14 11:42:00.883000+00:00 1 1 1 None None 1
1 uuKS6foMKSf0ul11 My experiment False None None None False 2025-11-14 11:41:59.335000+00:00 1 1 1 None None 1
Run
uid name started_at finished_at params reference reference_type is_locked created_at branch_id space_id transform_id report_id _logfile_id environment_id created_by_id initiated_by_run_id
id
1 0NDdAcEdCctSdsGn None 2025-11-14 11:41:57.789857+00:00 None None None None False 2025-11-14 11:41:57.790000+00:00 1 1 1 None None None 1 None
Schema
uid name description n is_type itype otype dtype hash minimal_set ordered_set maximal_set slot is_locked created_at branch_id space_id created_by_id run_id type_id validated_by_id composite_id
id
2 0Mg3OQtjlDCLmJGf None None 8 False Feature None None 1SotJiS28Qs9O7bjf4cWOA True False False None False 2025-11-14 11:42:03.573000+00:00 1 1 1 1 None None None
1 0000000000000000 None None -1 False Feature None None kMi7B_N88uu-YnbTLDU-DA True False False None False 2025-11-14 11:42:00.920000+00:00 1 1 1 1 None None None
Storage
uid root description type region instance_uid is_locked created_at branch_id space_id created_by_id run_id
id
1 IpIww7jFzPYA /home/runner/work/lamin-docs/lamin-docs/docs/l... None local None 5WCoFhciyw3n False 2025-11-14 11:41:54.413000+00:00 1 1 1 None
Transform
uid key description type source_code hash reference reference_type version is_latest is_locked created_at branch_id space_id created_by_id _template_id
id
1 Dlyds3zetI5b0000 tutorial.ipynb Tutorial notebook None None None None None True False 2025-11-14 11:41:57.785000+00:00 1 1 1 None
******************
* module: bionty *
******************
CellType
uid name ontology_id abbr synonyms description is_locked created_at branch_id space_id created_by_id run_id source_id
id
17 4BEwsp1Q mature alpha-beta T cell CL:0000791 None mature alpha-beta T-cell|mature alpha-beta T l... A Alpha-Beta T Cell That Has A Mature Phenotype. False 2025-11-14 11:42:02.382000+00:00 1 1 1 1 16
16 6By01L04 alpha-beta T cell CL:0000789 None alpha-beta T-cell|alpha-beta T-lymphocyte|alph... A T Cell That Expresses An Alpha-Beta T Cell R... False 2025-11-14 11:42:02.382000+00:00 1 1 1 1 16
15 6IC9NGJE CD8-positive, alpha-beta T cell CL:0000625 None CD8-positive, alpha-beta T-lymphocyte|CD8-posi... A T Cell Expressing An Alpha-Beta T Cell Recep... False 2025-11-14 11:42:02.091000+00:00 1 1 1 1 16
14 7GpphKmr lymphocyte of B lineage CL:0000945 None None A Lymphocyte Of B Lineage With The Commitment ... False 2025-11-14 11:42:01.774000+00:00 1 1 1 1 16
13 ryEtgi1y B cell CL:0000236 None B-cell|B-lymphocyte|B lymphocyte A Lymphocyte Of B Lineage That Is Capable Of B... False 2025-11-14 11:42:01.477000+00:00 1 1 1 1 16
12 u3sr1Gdf nucleate cell CL:0002242 None None A Cell Containing At Least One Nucleus. False 2025-11-14 11:42:00.741000+00:00 1 1 1 1 16
11 4Ilrnj9U hematopoietic cell CL:0000988 None haemopoietic cell|haematopoietic cell|hemopoie... A Cell Of A Hematopoietic Lineage. False 2025-11-14 11:42:00.741000+00:00 1 1 1 1 16
ExperimentalFactor
uid name ontology_id abbr synonyms description molecule instrument measurement is_locked created_at branch_id space_id created_by_id run_id source_id
id
6 2zGOHoUs single cell sequencing EFO:0007832 None None Single Cell Sequencing Examines The Sequence I... None single cell sequencing None False 2025-11-14 11:42:03.448000+00:00 1 1 1 1 21
5 6dI7vyK2 assay by sequencer EFO:0003740 None sequencing assay An Assay That Exploits A Sequencer As The Inst... None assay by sequencer None False 2025-11-14 11:42:03.448000+00:00 1 1 1 1 21
4 6oIjaW4X assay by instrument EFO:0002773 None None None None None None False 2025-11-14 11:42:03.448000+00:00 1 1 1 1 21
3 1wLRxESw assay by molecule EFO:0002772 None None None None None None False 2025-11-14 11:42:03.448000+00:00 1 1 1 1 21
2 789nVHwo RNA assay EFO:0001457 None None An Assay With Input Rna RNA assay None None False 2025-11-14 11:42:03.448000+00:00 1 1 1 1 21
1 4WYv9kl0 single-cell RNA sequencing EFO:0008913 None single-cell RNA-seq|scRNA-seq|single cell RNA ... A Protocol That Provides The Expression Profil... RNA assay single cell sequencing None False 2025-11-14 11:42:03.111000+00:00 1 1 1 1 21
Source
uid entity organism name in_db currently_used description url md5 source_website version is_locked created_at branch_id space_id created_by_id run_id dataframe_artifact_id
id
33 5JnVODh4 BioSample all ncbi False True NCBI BioSample attributes s3://bionty-assets/df_all__ncbi__2023-09__BioS... None https://www.ncbi.nlm.nih.gov/biosample/docs/at... 2023-09 False 2025-11-14 11:41:54.456000+00:00 1 1 1 None None
32 MJRqduf9 bionty.Ethnicity human hancestro False True Human Ancestry Ontology http://purl.obolibrary.org/obo/hancestro/relea... None https://github.com/EBISPOT/hancestro 3.0 False 2025-11-14 11:41:54.456000+00:00 1 1 1 None None
31 10va5JSt bionty.DevelopmentalStage mouse mmusdv False True Mouse Developmental Stages https://github.com/obophenotype/developmental-... None https://github.com/obophenotype/developmental-... 2024-05-28 False 2025-11-14 11:41:54.456000+00:00 1 1 1 None None
30 1GbFkOdz bionty.DevelopmentalStage human hsapdv False True Human Developmental Stages https://github.com/obophenotype/developmental-... None https://github.com/obophenotype/developmental-... 2024-05-28 False 2025-11-14 11:41:54.456000+00:00 1 1 1 None None
29 1atB0WnU Drug all chebi False False Chemical Entities of Biological Interest s3://bionty-assets/df_all__chebi__2024-07-27__... None https://www.ebi.ac.uk/chebi/ 2024-07-27 False 2025-11-14 11:41:54.456000+00:00 1 1 1 None None
28 ugaIoIlj Drug all dron False True Drug Ontology http://purl.obolibrary.org/obo/dron/releases/2... None https://bioportal.bioontology.org/ontologies/DRON 2024-08-05 False 2025-11-14 11:41:54.456000+00:00 1 1 1 None None
27 3rm9aOzL BFXPipeline all lamin False True Bioinformatics Pipeline s3://bionty-assets/df_all__lamin__1.0.0__BFXpi... None https://lamin.ai 1.0.0 False 2025-11-14 11:41:54.456000+00:00 1 1 1 None None
Which registries have I already learned about? 🤔
  • Artifact: datasets & models stored as files, folders, or arrays

  • Transform: transforms of artifacts

  • Run: runs of transforms

  • User: users

  • Storage: local or cloud storage locations

Every registry supports arbitrary relational queries using the class methods get and filter. The syntax for it is Django’s query syntax.

Here are some simple query examples.

# get a single record (here the current notebook)
transform = ln.Transform.get(key="tutorial.ipynb")

# get a set of records by filtering for a directory (LaminDB treats directories like AWS S3, as the prefix of the storage key)
ln.Artifact.filter(key__startswith="my_datasets/").to_dataframe()

# query all artifacts ingested from a transform
artifacts = ln.Artifact.filter(transform=transform).all()

# query all artifacts ingested from a notebook with "tutor" in the description
artifacts = ln.Artifact.filter(
    transform__description__icontains="tutor",
).all()
# get a single record (here the current notebook)
transform <- ln$Transform$get(key = "tutorial.Rmd")

# get a set of records by filtering for a directory (LaminDB treats directories like AWS S3, as the prefix of the storage key)
ln$Artifact$filter(key__startswith = "my_datasets/")$df()

# query all artifacts ingested from a transform
artifacts <- ln$Artifact$filter(transform = transform)$all()

# query all artifacts ingested from a notebook with "tutor" in the description
artifacts <- ln$Artifact$filter(
  transform__description__icontains = "tutor",
)$all()
Hide code cell content
# get a single record (here the current notebook)
transform = ln.Transform.get(key="tutorial.ipynb")

# get a set of records by filtering for a directory (LaminDB treats directories like AWS S3, as the prefix of the storage key)
ln.Artifact.filter(key__startswith="my_datasets/").to_dataframe()

# query all artifacts ingested from a transform
artifacts = ln.Artifact.filter(transform=transform).all()

# query all artifacts ingested from a notebook with "tutor" in the description
artifacts = ln.Artifact.filter(
    transform__description__icontains="tutor",
).all()
What does a double underscore mean?

For any field, the double underscore defines a comparator, e.g.,

  • name__icontains="Martha": name contains "Martha" when ignoring case

  • name__startswith="Martha": name starts with "Martha

  • name__in=["Martha", "John"]: name is "John" or "Martha"

For more info, see: Query & search registries.

Can I chain filters and searches?

Yes: ln.Artifact.filter(suffix=".jpg").search("my image")

The class methods search and lookup help with approximate matches.

# search artifacts
ln.Artifact.search("iris").to_dataframe().head()

# search transforms
ln.Transform.search("tutor").to_dataframe()

# look up records with auto-complete
records = ln.Record.lookup()
# search artifacts
ln$Artifact$search("iris")$df()

# search transforms
ln$Transform$search("tutor")$df()

# look up records with auto-complete
records <- ln$Record$lookup()
Show me a screenshot

For more info, see: Query & search registries.

Manage files & folders

Let’s look at a folder in the cloud that contains 3 sub-folders storing images & metadata of Iris flowers, generated in 3 subsequent studies.

# we use anon=True here in case no aws credentials are configured
ln.UPath("s3://lamindata/iris_studies", anon=True).view_tree()
# we use anon=True here in case no aws credentials are configured
ln$UPath("s3://lamindata/iris_studies", anon = TRUE)$view_tree()
Hide code cell content
# we use anon=True here in case no aws credentials are configured
ln.UPath("s3://lamindata/iris_studies", anon=True).view_tree()
3 sub-directories & 151 files with suffixes '.jpg', '.csv'
s3://lamindata/iris_studies
├── study0_raw_images/
│   ├── iris-0337d20a3b7273aa0ddaa7d6afb57a37a759b060e4401871db3cefaa6adc068d.jpg
│   ├── iris-0797945218a97d6e5251b4758a2ba1b418cbd52ce4ef46a3239e4b939bd9807b.jpg
│   ├── iris-0f133861ea3fe1b68f9f1b59ebd9116ff963ee7104a0c4200218a33903f82444.jpg
│   ├── iris-0fec175448a23db03c1987527f7e9bb74c18cffa76ef003f962c62603b1cbb87.jpg
│   ├── iris-125b6645e086cd60131764a6bed12650e0f7f2091c8bbb72555c103196c01881.jpg
│   ├── iris-13dfaff08727abea3da8cfd8d097fe1404e76417fefe27ff71900a89954e145a.jpg
│   ├── iris-1566f7f5421eaf423a82b3c1cd1328f2a685c5ef87d8d8e710f098635d86d3d0.jpg
│   ├── iris-1804702f49c2c385f8b30913569aebc6dce3da52ec02c2c638a2b0806f16014e.jpg
│   ├── iris-318d451a8c95551aecfde6b55520f302966db0a26a84770427300780b35aa05a.jpg
│   ├── iris-3dec97fe46d33e194520ca70740e4c2e11b0ffbffbd0aec0d06afdc167ddf775.jpg
│   ├── iris-3eed72bc2511f619190ce79d24a0436fef7fcf424e25523cb849642d14ac7bcf.jpg
│   ├── iris-430fa45aad0edfeb5b7138ff208fdeaa801b9830a9eb68f378242465b727289a.jpg
│   ├── iris-4cc15cd54152928861ecbdc8df34895ed463403efb1571dac78e3223b70ef569.jpg
│   ├── iris-4febb88ef811b5ca6077d17ef8ae5dbc598d3f869c52af7c14891def774d73fa.jpg
│   ├── iris-590e7f5b8f4de94e4b82760919abd9684ec909d9f65691bed8e8f850010ac775.jpg
│   ├── iris-5a313749aa61e9927389affdf88dccdf21d97d8a5f6aa2bd246ca4bc926903ba.jpg
│   ├── iris-5b3106db389d61f4277f43de4953e660ff858d8ab58a048b3d8bf8d10f556389.jpg
│   ├── iris-5f4e8fffde2404cc30be275999fddeec64f8a711ab73f7fa4eb7667c8475c57b.jpg
│   ├── iris-68d83ad09262afb25337ccc1d0f3a6d36f118910f36451ce8a6600c77a8aa5bd.jpg
│   ├── iris-70069edd7ab0b829b84bb6d4465b2ca4038e129bb19d0d3f2ba671adc03398cc.jpg
│   ├── iris-7038aef1137814473a91f19a63ac7a55a709c6497e30efc79ca57cfaa688f705.jpg
│   ├── iris-74d1acf18cfacd0a728c180ec8e1c7b4f43aff72584b05ac6b7c59f5572bd4d4.jpg
│   ├── iris-7c3b5c5518313fc6ff2c27fcbc1527065cbb42004d75d656671601fa485e5838.jpg
│   ├── iris-7cf1ebf02b2cc31539ed09ab89530fec6f31144a0d5248a50e7c14f64d24fe6e.jpg
│   ├── iris-7dcc69fa294fe04767706c6f455ea6b31d33db647b08aab44b3cd9022e2f2249.jpg
│   ├── iris-801b7efb867255e85137bc1e1b06fd6cbab70d20cab5b5046733392ecb5b3150.jpg
│   ├── iris-8305dd2a080e7fe941ea36f3b3ec0aa1a195ad5d957831cf4088edccea9465e2.jpg
│   ├── iris-83f433381b755101b9fc9fbc9743e35fbb8a1a10911c48f53b11e965a1cbf101.jpg
│   ├── iris-874121a450fa8a420bdc79cc7808fd28c5ea98758a4b50337a12a009fa556139.jpg
│   ├── iris-8c216e1acff39be76d6133e1f549d138bf63359fa0da01417e681842210ea262.jpg
│   ├── iris-92c4268516ace906ad1ac44592016e36d47a8c72a51cacca8597ba9e18a8278b.jpg
│   ├── iris-95d7ec04b8158f0873fa4aab7b0a5ec616553f3f9ddd6623c110e3bc8298248f.jpg
│   ├── iris-9ce2d8c4f1eae5911fcbd2883137ba5542c87cc2fe85b0a3fbec2c45293c903e.jpg
│   ├── iris-9ee27633bb041ef1b677e03e7a86df708f63f0595512972403dcf5188a3f48f5.jpg
│   ├── iris-9fb8d691550315506ae08233406e8f1a4afed411ea0b0ac37e4b9cdb9c42e1ec.jpg
│   ├── iris-9ffe51c2abd973d25a299647fa9ccaf6aa9c8eecf37840d7486a061438cf5771.jpg
│   ├── iris-a2be5db78e5b603a5297d9a7eec4e7f14ef2cba0c9d072dc0a59a4db3ab5bb13.jpg
│   ├── iris-ad7da5f15e2848ca269f28cd1dc094f6f685de2275ceaebb8e79d2199b98f584.jpg
│   ├── iris-bc515e63b5a4af49db8c802c58c83db69075debf28c792990d55a10e881944d9.jpg
│   ├── iris-bd8d83096126eaa10c44d48dbad4b36aeb9f605f1a0f6ca929d3d0d492dafeb6.jpg
│   ├── iris-bdae8314e4385d8e2322abd8e63a82758a9063c77514f49fc252e651cbd79f82.jpg
│   ├── iris-c175cd02ac392ecead95d17049f5af1dcbe37851c3e42d73e6bb813d588ea70b.jpg
│   ├── iris-c31e6056c94b5cb618436fbaac9eaff73403fa1b87a72db2c363d172a4db1820.jpg
│   ├── iris-ca40bc5839ee2f9f5dcac621235a1db2f533f40f96a35e1282f907b40afa457d.jpg
│   ├── iris-ddb685c56cfb9c8496bcba0d57710e1526fff7d499536b3942d0ab375fa1c4a6.jpg
│   ├── iris-e437a7c7ad2bbac87fef3666b40c4de1251b9c5f595183eda90a8d9b1ef5b188.jpg
│   ├── iris-e7e0774289e2153cc733ff62768c40f34ac9b7b42e23c1abc2739f275e71a754.jpg
│   ├── iris-e9da6dd69b7b07f80f6a813e2222eae8c8f7c3aeaa6bcc02b25ea7d763bcf022.jpg
│   ├── iris-eb01666d4591b2e03abecef5a7ded79c6d4ecb6d1922382c990ad95210d55795.jpg
│   ├── iris-f6e4890dee087bd52e2c58ea4c6c2652da81809603ea3af561f11f8c2775c5f3.jpg
│   └── meta.csv
├── study1_raw_images/
│   ├── iris-0879d3f5b337fe512da1c7bf1d2bfd7616d744d3eef7fa532455a879d5cc4ba0.jpg
│   ├── iris-0b486eebacd93e114a6ec24264e035684cebe7d2074eb71eb1a71dd70bf61e8f.jpg
│   ├── iris-0ff5ba898a0ec179a25ca217af45374fdd06d606bb85fc29294291facad1776a.jpg
│   ├── iris-1175239c07a943d89a6335fb4b99a9fb5aabb2137c4d96102f10b25260ae523f.jpg
│   ├── iris-1289c57b571e8e98e4feb3e18a890130adc145b971b7e208a6ce5bad945b4a5a.jpg
│   ├── iris-12adb3a8516399e27ff1a9d20d28dca4674836ed00c7c0ae268afce2c30c4451.jpg
│   ├── iris-17ac8f7b5734443090f35bdc531bfe05b0235b5d164afb5c95f9d35f13655cf3.jpg
│   ├── iris-2118d3f235a574afd48a1f345bc2937dad6e7660648516c8029f4e76993ea74d.jpg
│   ├── iris-213cd179db580f8e633087dcda0969fd175d18d4f325cb5b4c5f394bbba0c1e0.jpg
│   ├── iris-21a1255e058722de1abe928e5bbe1c77bda31824c406c53f19530a3ca40be218.jpg
│   ├── iris-249370d38cc29bc2a4038e528f9c484c186fe46a126e4b6c76607860679c0453.jpg
│   ├── iris-2ac575a689662b7045c25e2554df5f985a3c6c0fd5236fabef8de9c78815330c.jpg
│   ├── iris-2c5b373c2a5fd214092eb578c75eb5dc84334e5f11a02f4fa23d5d316b18f770.jpg
│   ├── iris-2ecaad6dfe3d9b84a756bc2303a975a732718b954a6f54eae85f681ea3189b13.jpg
│   ├── iris-32827aec52e0f3fa131fa85f2092fc6fa02b1b80642740b59d029cef920c26b3.jpg
│   ├── iris-336fc3472b6465826f7cd87d5cef8f78d43cf2772ebe058ce71e1c5bad74c0e1.jpg
│   ├── iris-432026d8501abcd495bd98937a82213da97fca410af1c46889eabbcf2fd1b589.jpg
│   ├── iris-49a9158e46e788a39eeaefe82b19504d58dde167f540df6bc9492c3916d5f7ca.jpg
│   ├── iris-4b47f927405d90caa15cbf17b0442390fc71a2ca6fb8d07138e8de17d739e9a4.jpg
│   ├── iris-5691cad06fe37f743025c097fa9c4cec85e20ca3b0efff29175e60434e212421.jpg
│   ├── iris-5c38dba6f6c27064eb3920a5758e8f86c26fec662cc1ac4b5208d5f30d1e3ead.jpg
│   ├── iris-5da184e8620ebf0feef4d5ffe4346e6c44b2fb60cecc0320bd7726a1844b14cd.jpg
│   ├── iris-66eee9ff0bfa521905f733b2a0c6c5acad7b8f1a30d280ed4a17f54fe1822a7e.jpg
│   ├── iris-6815050b6117cf2e1fd60b1c33bfbb94837b8e173ff869f625757da4a04965c9.jpg
│   ├── iris-793fe85ddd6a97e9c9f184ed20d1d216e48bf85aa71633eff6d27073e0825d54.jpg
│   ├── iris-850229e6293a741277eb5efaa64d03c812f007c5d0f470992a8d4cfdb902230c.jpg
│   ├── iris-86d782d20ef7a60e905e367050b0413ca566acc672bc92add0bb0304faa54cfc.jpg
│   ├── iris-875a96790adc5672e044cf9da9d2edb397627884dfe91c488ab3fb65f65c80ff.jpg
│   ├── iris-96f06136df7a415550b90e443771d0b5b0cd990b503b64cc4987f5cb6797fa9b.jpg
│   ├── iris-9a889c96a37e8927f20773783a084f31897f075353d34a304c85e53be480e72a.jpg
│   ├── iris-9e3208f4f9fedc9598ddf26f77925a1e8df9d7865a4d6e5b4f74075d558d6a5e.jpg
│   ├── iris-a7e13b6f2d7f796768d898f5f66dceefdbd566dd4406eea9f266fc16dd68a6f2.jpg
│   ├── iris-b026efb61a9e3876749536afe183d2ace078e5e29615b07ac8792ab55ba90ebc.jpg
│   ├── iris-b3c086333cb5ccb7bb66a163cf4bf449dc0f28df27d6580a35832f32fd67bfc9.jpg
│   ├── iris-b795e034b6ea08d3cd9acaa434c67aca9d17016991e8dd7d6fd19ae8f6120b77.jpg
│   ├── iris-bb4a7ad4c844987bc9dc9dfad2b363698811efe3615512997a13cd191c23febc.jpg
│   ├── iris-bd60a6ed0369df4bea1934ef52277c32757838123456a595c0f2484959553a36.jpg
│   ├── iris-c15d6019ebe17d7446ced589ef5ef7a70474d35a8b072e0edfcec850b0a106db.jpg
│   ├── iris-c45295e76c6289504921412293d5ddbe4610bb6e3b593ea9ec90958e74b73ed2.jpg
│   ├── iris-c50d481f9fa3666c2c3808806c7c2945623f9d9a6a1d93a17133c4cb1560c41c.jpg
│   ├── iris-df4206653f1ec9909434323c05bb15ded18e72587e335f8905536c34a4be3d45.jpg
│   ├── iris-e45d869cb9d443b39d59e35c2f47870f5a2a335fce53f0c8a5bc615b9c53c429.jpg
│   ├── iris-e76fa5406e02a312c102f16eb5d27c7e0de37b35f801e1ed4c28bd4caf133e7a.jpg
│   ├── iris-e8d3fd862aae1c005bcc80a73fd34b9e683634933563e7538b520f26fd315478.jpg
│   ├── iris-ea578f650069a67e5e660bb22b46c23e0a182cbfb59cdf5448cf20ce858131b6.jpg
│   ├── iris-eba0c546e9b7b3d92f0b7eb98b2914810912990789479838807993d13787a2d9.jpg
│   ├── iris-f22d4b9605e62db13072246ff6925b9cf0240461f9dfc948d154b983db4243b9.jpg
│   ├── iris-fac5f8c23d8c50658db0f4e4a074c2f7771917eb52cbdf6eda50c12889510cf4.jpg
│   └── meta.csv
└── study2_raw_images/
    ├── iris-01cdd55ca6402713465841abddcce79a2e906e12edf95afb77c16bde4b4907dc.jpg
    ├── iris-02868b71ddd9b33ab795ac41609ea7b20a6e94f2543fad5d7fa11241d61feacf.jpg
    ├── iris-0415d2f3295db04bebc93249b685f7d7af7873faa911cd270ecd8363bd322ed5.jpg
    ├── iris-0c826b6f4648edf507e0cafdab53712bb6fd1f04dab453cee8db774a728dd640.jpg
    ├── iris-10fb9f154ead3c56ba0ab2c1ab609521c963f2326a648f82c9d7cabd178fc425.jpg
    ├── iris-14cbed88b0d2a929477bdf1299724f22d782e90f29ce55531f4a3d8608f7d926.jpg
    ├── iris-186fe29e32ee1405ddbdd36236dd7691a3c45ba78cc4c0bf11489fa09fbb1b65.jpg
    ├── iris-1b0b5aabd59e4c6ed1ceb54e57534d76f2f3f97e0a81800ff7ed901c35a424ab.jpg
    ├── iris-1d35672eb95f5b1cf14c2977eb025c246f83cdacd056115fdc93e946b56b610c.jpg
    ├── iris-1f941001f508ff1bd492457a90da64e52c461bfd64587a3cf7c6bf1bcb35adab.jpg
    ├── iris-2a09038b87009ecee5e5b4cd4cef068653809cc1e08984f193fad00f1c0df972.jpg
    ├── iris-308389e34b6d9a61828b339916aed7af295fdb1c7577c23fb37252937619e7e4.jpg
    ├── iris-30e4e56b1f170ff4863b178a0a43ea7a64fdd06c1f89a775ec4dbf5fec71e15c.jpg
    ├── iris-332953f4d6a355ca189e2508164b24360fc69f83304e7384ca2203ddcb7c73b5.jpg
    ├── iris-338fc323ed045a908fb1e8ff991255e1b8e01c967e36b054cb65edddf97b3bb0.jpg
    ├── iris-34a7cc16d26ba0883574e7a1c913ad50cf630e56ec08ee1113bf3584f4e40230.jpg
    ├── iris-360196ba36654c0d9070f95265a8a90bc224311eb34d1ab0cf851d8407d7c28e.jpg
    ├── iris-36132c6df6b47bda180b1daaafc7ac8a32fd7f9af83a92569da41429da49ea5b.jpg
    ├── iris-36f2b9282342292b67f38a55a62b0c66fa4e5bb58587f7fec90d1e93ea8c407a.jpg
    ├── iris-37ad07fd7b39bc377fa6e9cafdb6e0c57fb77df2c264fe631705a8436c0c2513.jpg
    ├── iris-3ba1625bb78e4b69b114bdafcdab64104b211d8ebadca89409e9e7ead6a0557c.jpg
    ├── iris-4c5d9a33327db025d9c391aeb182cbe20cfab4d4eb4ac951cc5cd15e132145d8.jpg
    ├── iris-522f3eb1807d015f99e66e73b19775800712890f2c7f5b777409a451fa47d532.jpg
    ├── iris-589fa96b9a3c2654cf08d05d3bebf4ab7bc23592d7d5a95218f9ff87612992fa.jpg
    ├── iris-61b71f1de04a03ce719094b65179b06e3cd80afa01622b30cda8c3e41de6bfaa.jpg
    ├── iris-62ef719cd70780088a4c140afae2a96c6ca9c22b72b078e3b9d25678d00b88a5.jpg
    ├── iris-819130af42335d4bb75bebb0d2ee2e353a89a3d518a1d2ce69842859c5668c5a.jpg
    ├── iris-8669e4937a2003054408afd228d99cb737e9db5088f42d292267c43a3889001a.jpg
    ├── iris-86c76e0f331bc62192c392cf7c3ea710d2272a8cc9928d2566a5fc4559e5dce4.jpg
    ├── iris-8a8bc54332a42bb35ee131d7b64e9375b4ac890632eb09e193835b838172d797.jpg
    ├── iris-8e9439ec7231fa3b9bc9f62a67af4e180466b32a72316600431b1ec93e63b296.jpg
    ├── iris-90b7d491b9a39bb5c8bb7649cce90ab7f483c2759fb55fda2d9067ac9eec7e39.jpg
    ├── iris-9dededf184993455c411a0ed81d6c3c55af7c610ccb55c6ae34dfac2f8bde978.jpg
    ├── iris-9e6ce91679c9aaceb3e9c930f11e788aacbfa8341a2a5737583c14a4d6666f3d.jpg
    ├── iris-a0e65269f7dc7801ac1ad8bd0c5aa547a70c7655447e921d1d4d153a9d23815e.jpg
    ├── iris-a445b0720254984275097c83afbdb1fe896cb010b5c662a6532ed0601ea24d7c.jpg
    ├── iris-a6b85bf1f3d18bbb6470440592834c2c7f081b490836392cf5f01636ee7cf658.jpg
    ├── iris-b005c82b844de575f0b972b9a1797b2b1fbe98c067c484a51006afc4f549ada4.jpg
    ├── iris-bfcf79b3b527eb64b78f9a068a1000042336e532f0f44e68f818dd13ab492a76.jpg
    ├── iris-c156236fb6e888764485e796f1f972bbc7ad960fe6330a7ce9182922046439c4.jpg
    ├── iris-d99d5fd2de5be1419cbd569570dbb6c9a6c8ec4f0a1ff5b55dc2607f6ecdca8f.jpg
    ├── iris-d9aae37a8fa6afdef2af170c266a597925eea935f4d070e979d565713ea62642.jpg
    ├── iris-dbc87fcecade2c070baaf99caf03f4f0f6e3aa977e34972383cb94d0efe8a95d.jpg
    ├── iris-e3d1a560d25cf573d2cbbf2fe6cd231819e998109a5cf1788d59fbb9859b3be2.jpg
    ├── iris-ec288bdad71388f907457db2476f12a5cb43c28cfa28d2a2077398a42b948a35.jpg
    ├── iris-ed5b4e072d43bc53a00a4a7f4d0f5d7c0cbd6a006e9c2d463128cedc956cb3de.jpg
    ├── iris-f3018a9440d17c265062d1c61475127f9952b6fe951d38fd7700402d706c0b01.jpg
    ├── iris-f47c5963cdbaa3238ba2d446848e8449c6af83e663f0a9216cf0baba8429b36f.jpg
    ├── iris-fa4b6d7e3617216104b1405cda21bf234840cd84a2c1966034caa63def2f64f0.jpg
    ├── iris-fc4b0cc65387ff78471659d14a78f0309a76f4c3ec641b871e40b40424255097.jpg
    └── meta.csv

Let’s create an artifact for the first sub-folder.

artifact = ln.Artifact("s3://lamindata/iris_studies/study0_raw_images").save()
artifact
artifact <- ln$Artifact("s3://lamindata/iris_studies/study0_raw_images")$save()
artifact
Hide code cell content
artifact = ln.Artifact("s3://lamindata/iris_studies/study0_raw_images").save()
artifact
 referenced read-only storage location at s3://lamindata, is managed by instance with uid 4XIuR0tvaiXM
Artifact(uid='7NipNDk2vSatBwWm0000', version=None, is_latest=True, key='iris_studies/study0_raw_images', description=None, suffix='', kind=None, otype=None, size=658465, hash='IVKGMfNwi8zKvnpaD_gG7w', n_files=51, n_observations=None, branch_id=1, space_id=1, storage_id=2, run_id=1, schema_id=None, created_by_id=1, created_at=2025-11-14 11:42:08 UTC, is_locked=False)

As you see from path, the folder was merely registered in its present storage location without copying it.

artifact.path
artifact$path
Hide code cell content
artifact.path
S3QueryPath('s3://lamindata/iris_studies/study0_raw_images')

LaminDB keeps track of all your storage locations.

ln.Storage.to_dataframe()
ln$Storage$df()
Hide code cell content
ln.Storage.to_dataframe()
uid root description type region instance_uid is_locked created_at branch_id space_id created_by_id run_id
id
2 YmV3ZoHvAAAA s3://lamindata None s3 us-east-1 4XIuR0tvaiXM False 2025-11-14 11:42:07.761000+00:00 1 1 1 1.0
1 IpIww7jFzPYA /home/runner/work/lamin-docs/lamin-docs/docs/l... None local None 5WCoFhciyw3n False 2025-11-14 11:41:54.413000+00:00 1 1 1 NaN
How do I update or delete an artifact?
artifact.description = "My new description"  # change description
artifact.save()  # save the change to the database
artifact.delete()  # move to trash
artifact.delete(permanent=True)  # permanently delete
How do I create an artifact for a local file or folder?

Source path is local:

ln.Artifact("./my_data.fcs", key="my_data.fcs")
ln.Artifact("./my_images/", key="my_images")

Upon artifact.save(), the source path will be copied or uploaded into your instance’s current storage, visible & changeable via ln.settings.storage.

If the source path is remote or already in a registered storage location (one that’s registered in ln.Storage), artifact.save() will not trigger a copy or upload but register the existing path.

ln.Artifact("s3://my-bucket/my_data.fcs")  # key is auto-populated from S3, you can optionally pass a description
ln.Artifact("s3://my-bucket/my_images/")  # key is auto-populated from S3, you can optionally pass a description

You can use any storage location supported by `fsspec`.
Which fields are populated when creating an artifact record?

Basic fields:

  • uid: universal ID

  • key: a (virtual) relative path of the artifact in storage

  • description: an optional string description

  • storage: the storage location (the root, say, an S3 bucket or a local directory)

  • suffix: an optional file/path suffix

  • size: the artifact size in bytes

  • hash: a hash useful to check for integrity and collisions (is this artifact already stored?)

  • hash_type: the type of the hash

  • created_at: time of creation

  • updated_at: time of last update

Provenance-related fields:

  • created_by: the User who created the artifact

  • run: the Run of the Transform that created the artifact

For a full reference, see Artifact.

What exactly happens during save?

In the database: An artifact record is inserted into the Artifact registry. If the artifact record exists already, it’s returned.

In storage:

  • If the default storage is in the cloud, .save() triggers an upload for a local artifact.

  • If the artifact is already in a registered storage location, only the metadata of the record is saved to the artifact registry.

How does LaminDB compare to a AWS S3?

LaminDB provides a database on top of AWS S3 (or GCP storage, file systems, etc.).

Similar to organizing files with paths, you can organize artifacts using the key parameter of Artifact.

However, you’ll see that you can more conveniently query data by entities you care about: people, code, experiments, genes, proteins, cell types, etc.

Are artifacts aware of array-like data?

Yes.

You can make artifacts from paths referencing array-like objects:

ln.Artifact("./my_anndata.h5ad", key="my_anndata.h5ad")
ln.Artifact("./my_zarr_array/", key="my_zarr_array")

Or from in-memory objects:

ln.Artifact.from_dataframe(df, key="my_dataframe.parquet")
ln.Artifact.from_anndata(adata, key="my_anndata.h5ad")

You can open large artifacts for slicing from the cloud or load small artifacts directly into memory via:

artifact.open()

Manage biological registries

Every bionty registry is based on configurable public ontologies (>20 of them) that are automatically leveraged during validation & annotation. Sometimes you want to access the public ontology directly.

import bionty as bt

cell_type_ontology = bt.CellType.public()
cell_type_ontology
Hide code cell output
PublicOntology
Entity: CellType
Organism: all
Source: cl, 2025-04-10
#terms: 3136

The returned object can be searched like you can search a registry.

cell_type_ontology.search("gamma-delta T cell").head(2)
Hide code cell output
name definition synonyms parents
ontology_id
CL:0000798 gamma-delta T cell A T Cell That Expresses A Gamma-Delta T Cell R... gamma-delta T lymphocyte|gamma-delta T-lymphoc... [CL:0000084]
CL:4033072 cycling gamma-delta T cell A(N) Gamma-Delta T Cell That Is Cycling. proliferating gamma-delta T cell [CL:4033069, CL:0000798]

Because you can’t update an external public ontology, you update the content of the corresponding registry. Here, you create a new cell type.

# create an ontology-coupled cell type record and save it
neuron = bt.CellType.from_source(name="neuron").save()

# create a record to track a new cell state
new_cell_state = bt.CellType(
    name="my neuron cell state", description="explains X"
).save()

# express that it's a neuron state
new_cell_state.parents.add(neuron)

# view ontological hierarchy
new_cell_state.view_parents(distance=2)
Hide code cell output
_images/d0be3da54884da979dcca71eb61a49d328e6117afbbe207da580b39bcb2998db.svg

Manage AnnData objects

LaminDB supports a growing number of data structures: DataFrame, AnnData, MuData, SpatialData, and Tiledbsoma with their corresponding representations in storage.

Let’s go through the example of the quickstart, but store the dataset in an AnnData this time.

# define var schema
var_schema = ln.Schema(itype=bt.Gene.ensembl_gene_id, dtype=int).save()

# define composite schema
anndata_schema = ln.Schema(
    otype="AnnData", slots={"obs": schema, "var.T": var_schema}
).save()

Validate & annotate an AnnData.

import anndata as ad

# store the dataset as an AnnData object to distinguish data from metadata
adata = ad.AnnData(df.iloc[:, :3], obs=df.iloc[:, 3:-1])

# save curated artifact
artifact = ln.Artifact.from_anndata(
    adata, key="my_datasets/my_rnaseq1.h5ad", schema=anndata_schema
).save()
artifact.describe()
Hide code cell output
 writing the in-memory object into cache
 loading artifact into memory for validation
 returning schema with same hash: Schema(uid='0Mg3OQtjlDCLmJGf', name=None, description=None, n=8, is_type=False, itype='Feature', otype=None, dtype=None, hash='1SotJiS28Qs9O7bjf4cWOA', minimal_set=True, ordered_set=False, maximal_set=False, slot=None, branch_id=1, space_id=1, created_by_id=1, run_id=1, type_id=None, validated_by_id=None, composite_id=None, created_at=2025-11-14 11:42:03 UTC, is_locked=False)
Artifact: my_datasets/my_rnaseq1.h5ad (0000)
├── uid: mtpBd8pT5XE95jjH0000            run: 0NDdAcE (tutorial.ipynb)
kind: dataset                        otype: AnnData               
hash: TWUlDi-V-Try1uCxWJ65nQ         size: 29.5 KB                
branch: main                         space: all                   
created_at: 2025-11-14 11:42:12 UTC  created_by: anonymous        
n_observations: 3                                                 
├── storage/path: /home/runner/work/lamin-docs/lamin-docs/docs/lamindb-tutorial/.lamindb/mtpBd8pT5XE95jjH0000.h5ad
├── Dataset features
├── obs (8)                                                                                                    
│   assay_oid                       bionty.ExperimentalFactor.ontolo…  EFO:0008913                             
│   cell_type_by_expert             bionty.CellType                    B cell, CD8-positive, alpha-beta T cell 
│   cell_type_by_model              bionty.CellType                    B cell, T cell                          
│   perturbation                    Record                             DMSO, IFNG                              
│   donor                           str                                                                        
│   sample_note                     str                                                                        
│   concentration                   str                                                                        
│   treatment_time_h                num                                                                        
└── var.T (3 bionty.Gene.ensembl_…                                                                             
    CD8A                            num                                                                        
    CD4                             num                                                                        
    CD14                            num                                                                        
└── Labels
    └── .records                        Record                             DMSO, IFNG                              
        .cell_types                     bionty.CellType                    T cell, B cell, CD8-positive, alpha-bet…
        .experimental_factors           bionty.ExperimentalFactor          single-cell RNA sequencing              

Because AnnData separates the high-dimensional count matrix that’s typically indexed with Ensembl gene ids from the metadata, we’re now working with two types of feature sets (bt.Gene for the counts and ln.Feature for the metadata). These correspond to the obs and the var schema in the anndata_schema.

If you want to find a dataset by whether it measured CD8A, you can do so as as follows.

# query for all feature sets that contain CD8A
feature_sets = ln.Schema.filter(genes__symbol="CD8A").all()

# query for all artifacts linked to these feature sets
ln.Artifact.filter(feature_sets__in=feature_sets).to_dataframe()
Hide code cell output
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
4 mtpBd8pT5XE95jjH0000 my_datasets/my_rnaseq1.h5ad None .h5ad dataset AnnData 30232 TWUlDi-V-Try1uCxWJ65nQ None 3 None True False 2025-11-14 11:42:12.603000+00:00 1 1 1 1 4 1

Scale learning

How do you integrate new datasets with your existing datasets? Leverage Collection.

# a new dataset
df2 = ln.examples.datasets.mini_immuno.get_dataset2(otype="DataFrame")
adata = ad.AnnData(df2.iloc[:, :3], obs=df2.iloc[:, 3:-1])
artifact2 = ln.Artifact.from_anndata(
    adata, key="my_datasets/my_rnaseq2.h5ad", schema=anndata_schema
).save()
Hide code cell output
 writing the in-memory object into cache
 loading artifact into memory for validation

Create a collection using Collection.

collection = ln.Collection([artifact, artifact2], key="my-RNA-seq-collection").save()
collection.describe()
collection.view_lineage()
Hide code cell output
Collection: my-RNA-seq-collection (0000)
└── uid: SgXmC2QRIWGNNEXx0000            run: 0NDdAcE (tutorial.ipynb)
    branch: main                         space: all                   
    created_at: 2025-11-14 11:42:14 UTC  created_by: anonymous        
_images/b2a1c068bf2542a75fad2ea2e23bcb039dacc5499e933984bfb428480e951584.svg
# if it's small enough, you can load the entire collection into memory as if it was one
collection.load()

# typically, it's too big, hence, open it for streaming (if the backend allows it)
# collection.open()

# or iterate over its artifacts
collection.artifacts.all()

# or look at a DataFrame listing the artifacts
collection.artifacts.to_dataframe()
Hide code cell output
uid key description suffix kind otype size hash n_files n_observations version is_latest is_locked created_at branch_id space_id storage_id run_id schema_id created_by_id
id
5 hjWUc0ed8T9sWzI40000 my_datasets/my_rnaseq2.h5ad None .h5ad dataset AnnData 23712 evwa9JaetcfvvMASeqqDVA None 3 None True False 2025-11-14 11:42:14.292000+00:00 1 1 1 1 4 1
4 mtpBd8pT5XE95jjH0000 my_datasets/my_rnaseq1.h5ad None .h5ad dataset AnnData 30232 TWUlDi-V-Try1uCxWJ65nQ None 3 None True False 2025-11-14 11:42:12.603000+00:00 1 1 1 1 4 1

Directly train models on collections of AnnData.

# to train models, batch iterate through the collection as if it was one array
from torch.utils.data import DataLoader, WeightedRandomSampler
dataset = collection.mapped(obs_keys=["cell_medium"])
sampler = WeightedRandomSampler(
    weights=dataset.get_label_weights("cell_medium"), num_samples=len(dataset)
)
data_loader = DataLoader(dataset, batch_size=2, sampler=sampler)
for batch in data_loader:
    pass

Read this blog post for more on training models on distributed datasets.