Weights & Biases¶
We show how LaminDB can be integrated with W&B to track the training process and associate datasets & parameters with models.
# !pip install -q 'lamindb[jupyter,aws]' torch torchvision lightning wandb
!lamin init --storage ./lamin-mlops
!wandb login
Show code cell output
→ connected lamindb: anonymous/lamin-mlops
wandb: Currently logged in as: felix_lamin (lamin-mlops-demo). Use `wandb login --relogin` to force relogin
import lamindb as ln
import wandb
ln.context.uid = "tULn4Va2yERp0000"
ln.context.track()
Show code cell output
→ connected lamindb: anonymous/lamin-mlops
→ created Transform('tULn4Va2'), started new Run('Zs9NiWXL') at 2024-11-21 05:37:50 UTC
→ notebook imports: lamindb==0.76.16 lightning==2.4.0 torch==2.5.1 torchvision==0.20.1 wandb==0.18.7
Define a model¶
Define a simple autoencoder as an example model using PyTorch Lightning.
from torch import optim, nn, utils
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
import lightning
class LitAutoEncoder(lightning.LightningModule):
def __init__(self, hidden_size, bottleneck_size):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, bottleneck_size)
)
self.decoder = nn.Sequential(
nn.Linear(bottleneck_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 28 * 28)
)
# save hyper-parameters to self.hparams auto-logged by wandb
self.save_hyperparameters()
def training_step(self, batch, batch_idx):
x, y = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = nn.functional.mse_loss(x_hat, x)
self.log("train_loss", loss)
return loss
def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=1e-3)
return optimizer
Query & download the MNIST dataset¶
We saved the MNIST dataset in curation notebook and it now shows up in the artifact registry:
ln.Artifact.filter(type="dataset").df()
uid | version | is_latest | description | key | suffix | type | size | hash | n_objects | n_observations | _hash_type | _accessor | visibility | _key_is_virtual | storage_id | transform_id | run_id | created_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||||||
1 | j2FSi1RGxO1QpJNX0000 | None | True | None | testdata/mnist | dataset | 54950048 | amFx_vXqnUtJr0kmxxWK2Q | 4 | None | md5-d | None | 1 | True | 1 | 1 | 1 | 2024-11-21 05:37:41.550539+00:00 | 1 |
You can also see it on lamin.ai if you connected your instance.
Let’s get the dataset:
artifact = ln.Artifact.get(key="testdata/mnist")
artifact
Show code cell output
Artifact(uid='j2FSi1RGxO1QpJNX0000', is_latest=True, key='testdata/mnist', suffix='', type='dataset', size=54950048, hash='amFx_vXqnUtJr0kmxxWK2Q', n_objects=4, _hash_type='md5-d', visibility=1, _key_is_virtual=True, storage_id=1, transform_id=1, run_id=1, created_by_id=1, created_at=2024-11-21 05:37:41 UTC)
And download it to a local cache:
path = artifact.cache()
path
Show code cell output
PosixUPath('/home/runner/work/lamin-mlops/lamin-mlops/docs/lamin-mlops/.lamindb/j2FSi1RGxO1QpJNX')
Create a pytorch-compatible dataset:
dataset = MNIST(path.as_posix(), transform=ToTensor())
dataset
Show code cell output
Dataset MNIST
Number of datapoints: 60000
Root location: /home/runner/work/lamin-mlops/lamin-mlops/docs/lamin-mlops/.lamindb/j2FSi1RGxO1QpJNX
Split: Train
StandardTransform
Transform: ToTensor()
Monitor training with wandb¶
Train our example model and track the training progress with wandb
.
from lightning.pytorch.loggers import WandbLogger
MODEL_CONFIG = {
"hidden_size": 32,
"bottleneck_size": 16,
"batch_size": 32
}
# create the data loader
train_loader = utils.data.DataLoader(dataset, batch_size=MODEL_CONFIG["batch_size"], shuffle=True)
# init model
autoencoder = LitAutoEncoder(MODEL_CONFIG["hidden_size"], MODEL_CONFIG["bottleneck_size"])
# initialize the logger
wandb_logger = WandbLogger(project="lamin")
# add batch size to the wandb config
wandb_logger.experiment.config["batch_size"] = MODEL_CONFIG["batch_size"]
Show code cell output
wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
wandb: Currently logged in as: felix_lamin (lamin-mlops-demo). Use `wandb login --relogin` to force relogin
wandb: Tracking run with wandb version 0.18.7
wandb: Run data is saved locally in ./wandb/run-20241121_053753-krtggvc6
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run rare-firefly-140
wandb: ⭐️ View project at https://wandb.ai/lamin-mlops-demo/lamin
wandb: 🚀 View run at https://wandb.ai/lamin-mlops-demo/lamin/runs/krtggvc6
from lightning.pytorch.callbacks import ModelCheckpoint
# store checkpoints to disk and upload to LaminDB after training
checkpoint_callback = ModelCheckpoint(
dirpath=f"model_checkpoints/{wandb_logger.version}",
filename="last_epoch",
save_top_k=1,
monitor="train_loss"
)
# train model
trainer = lightning.Trainer(
accelerator="cpu",
limit_train_batches=3,
max_epochs=2,
logger=wandb_logger,
callbacks=[checkpoint_callback]
)
trainer.fit(model=autoencoder, train_dataloaders=train_loader)
Show code cell output
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
-----------------------------------------------
0 | encoder | Sequential | 25.6 K | train
1 | decoder | Sequential | 26.4 K | train
-----------------------------------------------
52.1 K Trainable params
0 Non-trainable params
52.1 K Total params
0.208 Total estimated model params size (MB)
8 Modules in train mode
0 Modules in eval mode
/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=3` in the `DataLoader` to improve performance.
/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (3) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
Training: | | 0/? [00:00<?, ?it/s]
Training: 0%| | 0/3 [00:00<?, ?it/s]
Epoch 0: 0%| | 0/3 [00:00<?, ?it/s]
Epoch 0: 33%|███▎ | 1/3 [00:00<00:00, 47.75it/s]
Epoch 0: 33%|███▎ | 1/3 [00:00<00:00, 46.08it/s, v_num=gvc6]
Epoch 0: 67%|██████▋ | 2/3 [00:00<00:00, 68.83it/s, v_num=gvc6]
Epoch 0: 67%|██████▋ | 2/3 [00:00<00:00, 67.14it/s, v_num=gvc6]
Epoch 0: 100%|██████████| 3/3 [00:00<00:00, 82.09it/s, v_num=gvc6]
Epoch 0: 100%|██████████| 3/3 [00:00<00:00, 80.60it/s, v_num=gvc6]
Epoch 0: 100%|██████████| 3/3 [00:00<00:00, 77.16it/s, v_num=gvc6]
Epoch 0: 0%| | 0/3 [00:00<?, ?it/s, v_num=gvc6]
Epoch 1: 0%| | 0/3 [00:00<?, ?it/s, v_num=gvc6]
Epoch 1: 33%|███▎ | 1/3 [00:00<00:00, 100.25it/s, v_num=gvc6]
Epoch 1: 33%|███▎ | 1/3 [00:00<00:00, 92.44it/s, v_num=gvc6]
Epoch 1: 67%|██████▋ | 2/3 [00:00<00:00, 108.58it/s, v_num=gvc6]
Epoch 1: 67%|██████▋ | 2/3 [00:00<00:00, 104.23it/s, v_num=gvc6]
Epoch 1: 100%|██████████| 3/3 [00:00<00:00, 112.46it/s, v_num=gvc6]
Epoch 1: 100%|██████████| 3/3 [00:00<00:00, 109.34it/s, v_num=gvc6]
Epoch 1: 100%|██████████| 3/3 [00:00<00:00, 105.79it/s, v_num=gvc6]
`Trainer.fit` stopped: `max_epochs=2` reached.
Epoch 1: 100%|██████████| 3/3 [00:00<00:00, 85.50it/s, v_num=gvc6]
wandb_logger.experiment.name
Show code cell output
'rare-firefly-140'
wandb_logger.version
Show code cell output
'krtggvc6'
wandb.finish()
Show code cell output
wandb:
wandb: 🚀 View run rare-firefly-140 at: https://wandb.ai/lamin-mlops-demo/lamin/runs/krtggvc6
wandb: ⭐️ View project at: https://wandb.ai/lamin-mlops-demo/lamin
wandb: Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20241121_053753-krtggvc6/logs
See the training progress in the wandb
UI:
Save model in LaminDB¶
# save checkpoint as a model in LaminDB
artifact = ln.Artifact(
f"model_checkpoints/{wandb_logger.version}",
key="testmodels/litautoencoder", # is automatically versioned
type="model",
).save()
# create a label with the wandb experiment name
experiment_label = ln.ULabel(
name=wandb_logger.experiment.name,
description="wandb experiment name"
).save()
# annotate the model artifact
artifact.ulabels.add(experiment_label)
# define the associated model hyperparameters in ln.Param
for k, v in MODEL_CONFIG.items():
ln.Param(name=k, dtype=type(v).__name__).save()
artifact.params.add_values(MODEL_CONFIG)
# describe the artifact
artifact.describe()
Show code cell output
Artifact(uid='aUHQVaCNxc9XuOVl0000', is_latest=True, key='testmodels/litautoencoder', suffix='', type='model', size=636275, hash='7DfeWJnlOmlCd4alo4UioQ', n_objects=1, _hash_type='md5-d', visibility=1, _key_is_virtual=True, created_at=2024-11-21 05:37:56 UTC)
Provenance
.storage = '/home/runner/work/lamin-mlops/lamin-mlops/docs/lamin-mlops'
.transform = 'Weights & Biases'
.run = 2024-11-21 05:37:50 UTC
.created_by = 'anonymous'
Labels
.ulabels = 'rare-firefly-140'
Params
'batch_size' = 32
'bottleneck_size' = 16
'hidden_size' = 32
See the checkpoints:
If later on, you want to re-use the checkpoint, you can download it like so:
ln.Artifact.get(key='testmodels/litautoencoder').cache()
PosixUPath('/home/runner/work/lamin-mlops/lamin-mlops/docs/lamin-mlops/.lamindb/aUHQVaCNxc9XuOVl')
Or on the CLI:
lamin get artifact --key 'testmodels/litautoencoder'
# save notebook
# ln.context.finish()