Generate single-cell images¶
Here, we are going to process the previously ingested microscopy images with the scPortrait pipeline to generate single-cell images that we can use to assess autophagosome formation at a single-cell level.
import lamindb as ln
from collections.abc import Iterable
from pathlib import Path
from scportrait.pipeline.extraction import HDF5CellExtraction
from scportrait.pipeline.project import Project
from scportrait.pipeline.segmentation.workflows import CytosolSegmentationCellpose
ln.track()
Show code cell output
→ connected lamindb: testuser1/test-sc-imaging
/opt/hostedtoolcache/Python/3.12.11/x64/lib/python3.12/site-packages/xarray_schema/__init__.py:1: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
from pkg_resources import DistributionNotFound, get_distribution
→ created Transform('60U4hMpZj5fQ0000'), started new Run('vp9td0Zk...') at 2025-07-14 06:40:27 UTC
→ notebook imports: lamindb==1.8.0 scportrait==1.3.5
• recommendation: to identify the notebook across renames, pass the uid: ln.track("60U4hMpZj5fQ")
Query microscopy images¶
First, we query for the raw and annotated microscopy images.
input_images = ln.Artifact.filter(
ulabels__name="autophagy imaging", description__icontains="raw image", suffix=".tif"
)
The experiment includes two genotypes (WT
and EI24KO
) under two treatment conditions (unstimulated
vs. 14h Torin-1
).
Multiple clonal cell lines were imaged for each condition across several fields of view (FOVs) and imaging channels.
We’ll extract single-cell images from each FOV and annotate them with metadata including genotype, treatment condition, clonal cell line, and imaging experiment.
input_images_df = input_images.df(features=True)
display(input_images_df.head())
conditions = input_images_df["stimulation"].unique().tolist()
cell_line_clones = input_images_df["cell_line_clone"].unique().tolist()
FOVs = input_images_df["FOV"].unique().tolist()
Show code cell output
→ queried for all categorical features with dtype ULabel or Record and non-categorical features: (11) ['genotype', 'stimulation', 'cell_line_clone', 'channel', 'FOV', 'magnification', 'microscope', 'imaged structure', 'image_path', 'resolution', 'study']
uid | key | genotype | stimulation | cell_line_clone | channel | FOV | magnification | microscope | imaged structure | resolution | study | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||
2 | Md4OouMExlWS2YfZ0000 | input_data_imaging_usecase/images/Timepoint001... | WT | 14h Torin-1 | U2OS lcklip-mNeon mCherryLC3B clone 1 | Alexa488 | FOV1 | 20X | Opera Phenix | LckLip-mNeon | 0.597976 | autophagy imaging |
3 | KKbVRkOjQ1jdA2fx0000 | input_data_imaging_usecase/images/Timepoint001... | WT | 14h Torin-1 | U2OS lcklip-mNeon mCherryLC3B clone 1 | Alexa488 | FOV2 | 20X | Opera Phenix | LckLip-mNeon | 0.597976 | autophagy imaging |
4 | CiQYTBNZrj0CPejK0000 | input_data_imaging_usecase/images/Timepoint001... | WT | 14h Torin-1 | U2OS lcklip-mNeon mCherryLC3B clone 1 | DAPI | FOV1 | 20X | Opera Phenix | DNA | 0.597976 | autophagy imaging |
5 | W6tzE7JNiM80Ruho0000 | input_data_imaging_usecase/images/Timepoint001... | WT | 14h Torin-1 | U2OS lcklip-mNeon mCherryLC3B clone 1 | DAPI | FOV2 | 20X | Opera Phenix | DNA | 0.597976 | autophagy imaging |
6 | YGiNq6DPfIEjtt9j0000 | input_data_imaging_usecase/images/Timepoint001... | WT | 14h Torin-1 | U2OS lcklip-mNeon mCherryLC3B clone 1 | mCherry | FOV1 | 20X | Opera Phenix | mCherry-LC3B | 0.597976 | autophagy imaging |
Alternatively, we can query for the ULabel
directly:
conditions = ln.ULabel.filter(
links_artifact__feature__name="stimulation", artifacts__in=input_images
).distinct()
cell_line_clones = ln.ULabel.filter(
links_artifact__feature__name="cell_line_clone", artifacts__in=input_images
).distinct()
FOVs = ln.ULabel.filter(
links_artifact__feature__name="FOV", artifacts__in=input_images
).distinct()
By iterating through conditions, cell lines and FOVs, we should only have 3 images showing a single FOV to enable processing using scPortrait.
# Create artifact type feature and associated label
ln.Feature(name="artifact type", dtype=ln.ULabel).save()
ln.ULabel(name="scportrait config").save()
# Load config file for processing all datasets
config_file_af = ln.Artifact.using("scportrait/examples").get(
key="input_data_imaging_usecase/config.yml"
)
config_file_af.description = (
"config for scportrait for processing of cells stained for autophagy markers"
)
config_file_af.save()
# Annotate the config file with the metadata relevant to the study
config_file_af.features.add_values(
{"study": "autophagy imaging", "artifact type": "scportrait config"}
)
Show code cell output
→ transferred: Artifact(uid='voi8szTkmKPiahUA0000')
Process images with scPortrait¶
Let’s take a look at the processing of one example FOV.
# Get input images for one example FOV
condition, cellline, FOV = conditions[0], cell_line_clones[0], FOVs[0]
images = (
input_images.filter(ulabels=condition)
.filter(ulabels=cellline)
.filter(ulabels=FOV)
.distinct()
)
# Quick sanity check - all images should share metadata except channel/structure
values_to_ignore = ["channel", "imaged structure"]
features = images.first().features.get_values()
shared_features = {k: v for k, v in features.items() if k not in values_to_ignore}
for image in images:
image_features = image.features.get_values()
filtered_features = {
k: v for k, v in image_features.items() if k not in values_to_ignore
}
assert shared_features == filtered_features
# Get image paths in correct channel order
input_image_paths = [
images.filter(ulabels__name=channel).one().cache()
for channel in ["DAPI", "Alexa488", "mCherry"]
]
# Create output directory and unique project ID
output_directory = "processed_data"
unique_project_id = f"{shared_features['cell_line_clone']}/{shared_features['stimulation']}/{shared_features['FOV']}".replace(
" ", "_"
)
project_location = f"{output_directory}/{unique_project_id}/scportrait_project"
# Create directories
Path(project_location).mkdir(parents=True, exist_ok=True)
# Initialize the scPortrait project
project = Project(
project_location=project_location,
config_path=config_file_af.cache(),
segmentation_f=CytosolSegmentationCellpose,
extraction_f=HDF5CellExtraction,
overwrite=True,
)
# Load images and process
project.load_input_from_tif_files(
input_image_paths, overwrite=True, channel_names=["DAPI", "Alexa488", "mCherry"]
)
project.segment()
project.extract()
Show code cell output
Updating project config file.
INFO The Zarr backing store has been changed from None the new file path:
processed_data/U2OS_lcklip-mNeon_mCherryLC3B_clone_1/14h_Torin-1/FOV1/scportrait_project/scportrait.sdata
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
0%| | 0.00/25.3M [00:00<?, ?B/s]
37%|███▋ | 9.25M/25.3M [00:00<00:00, 96.8MB/s]
75%|███████▍ | 18.9M/25.3M [00:00<00:00, 99.3MB/s]
100%|██████████| 25.3M/25.3M [00:00<00:00, 92.8MB/s]
0%| | 0.00/3.54k [00:00<?, ?B/s]
100%|██████████| 3.54k/3.54k [00:00<00:00, 9.37MB/s]
0%| | 0.00/25.3M [00:00<?, ?B/s]
31%|███▏ | 7.97M/25.3M [00:00<00:00, 83.5MB/s]
63%|██████▎ | 15.9M/25.3M [00:00<00:00, 80.5MB/s]
93%|█████████▎| 23.6M/25.3M [00:00<00:00, 80.6MB/s]
100%|██████████| 25.3M/25.3M [00:00<00:00, 72.5MB/s]
0%| | 0.00/3.54k [00:00<?, ?B/s]
100%|██████████| 3.54k/3.54k [00:00<00:00, 8.99MB/s]
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
Let’s look at the input images we processed.
project.plot_input_image()
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04

Now we can look at the results generated by scPortrait. First, the segmentation masks.
project.plot_segmentation_masks()
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04

And then extraction results consisting of individual single-cell images over all of the channels.
project.plot_single_cell_images()

Save and annotate results¶
Now we also want to save these results to the instance.
ln.Artifact.from_spatialdata(
sdata=project.filehandler.get_sdata(),
description="scportrait spatialdata object containing results of cells stained for autophagy markers",
key=f"processed_data_imaging_use_case/{unique_project_id}/spatialdata.zarr",
).save()
Show code cell output
WARNING:ome_zarr.io:version mismatch: detected: RasterFormatV02, requested: FormatV04
INFO The SpatialData object is not self-contained (i.e. it contains some elements that are Dask-backed from
locations outside /home/runner/.cache/lamindb/wv7MNjvqmYIA7JMd0000.zarr). Please see the documentation of
`is_self_contained()` to understand the implications of working with SpatialData objects that are not
self-contained.
INFO The Zarr backing store has been changed from
processed_data/U2OS_lcklip-mNeon_mCherryLC3B_clone_1/14h_Torin-1/FOV1/scportrait_project/scportrait.sdata
the new file path: /home/runner/.cache/lamindb/wv7MNjvqmYIA7JMd0000.zarr
Artifact(uid='wv7MNjvqmYIA7JMd0000', is_latest=True, key='processed_data_imaging_use_case/U2OS_lcklip-mNeon_mCherryLC3B_clone_1/14h_Torin-1/FOV1/spatialdata.zarr', description='scportrait spatialdata object containing results of cells stained for autophagy markers', suffix='.zarr', kind='dataset', otype='SpatialData', size=6859499, hash='uakxyAGlgTnXelOTYMLN1w', n_files=75, branch_id=1, space_id=1, storage_id=1, run_id=3, created_by_id=1, created_at=2025-07-14 06:41:47 UTC)
# Define schemas for single-cell image dataset
schemas = {
"var.T": ln.Schema(
name="single-cell image dataset schema var",
description="column schema for data measured in obsm[single_cell_images]",
itype=ln.Feature,
).save(),
"obs": ln.Schema(
name="single-cell image dataset schema obs",
features=[
ln.Feature(name="scportrait_cell_id", dtype="int", coerce_dtype=True).save()
],
).save(),
"uns": ln.Schema(
name="single-cell image dataset schema uns",
itype=ln.Feature,
dtype=dict,
).save(),
}
# Create composite schema
h5sc_schema = ln.Schema(
name="single-cell image dataset",
otype="AnnData",
slots=schemas,
).save()
Show code cell output
! you are trying to create a record with name='single-cell image dataset schema obs' but a record with similar name exists: 'single-cell image dataset schema var'. Did you mean to load it?
! you are trying to create a record with name='single-cell image dataset schema uns' but records with similar names exist: 'single-cell image dataset schema var', 'single-cell image dataset schema obs'. Did you mean to load one of them?
! you are trying to create a record with name='single-cell image dataset' but records with similar names exist: 'single-cell image dataset schema var', 'single-cell image dataset schema obs', 'single-cell image dataset schema uns'. Did you mean to load one of them?
# Curate the AnnData object
curator = ln.curators.AnnDataCurator(project.h5sc, h5sc_schema)
curator.validate()
# Save artifact with annotations
artifact = curator.save_artifact(
key=f"processed_data_imaging_use_case/{unique_project_id}/single_cell_data.h5ad"
)
# Add metadata and labels
annotation = shared_features.copy()
annotation["imaged structure"] = [
ln.ULabel.using("scportrait/examples").get(name=name)
for name in ["LckLip-mNeon", "DNA", "mCherry-LC3B"]
]
artifact.features.add_values(annotation)
artifact.labels.add(ln.ULabel(name="scportrait single-cell images").save())
! 5 terms not validated in feature 'columns' in slot 'var.T': '0', '1', '2', '3', '4'
→ fix typos, remove non-existent values, or save terms via: curator.slots['var.T'].cat.add_new_from('columns')
! no values were validated for columns!
! 1 term not validated in feature 'keys' in slot 'uns': 'single_cell_images'
→ fix typos, remove non-existent values, or save terms via: curator.slots['uns'].cat.add_new_from('keys')
! no values were validated for keys!
→ returning existing schema with same hash: Schema(uid='0000000000000000', name='single-cell image dataset schema var', description='column schema for data measured in obsm[single_cell_images]', n=-1, is_type=False, itype='Feature', hash='kMi7B_N88uu-YnbTLDU-DA', minimal_set=True, ordered_set=False, maximal_set=False, branch_id=1, space_id=1, created_by_id=1, run_id=3, created_at=2025-07-14 06:41:47 UTC)
→ returning existing schema with same hash: Schema(uid='fxdP2u6cVNyhRg6Y', name='single-cell image dataset schema obs', n=1, is_type=False, itype='Feature', hash='98jtXAU6e8cL9NqcucBT8w', minimal_set=True, ordered_set=False, maximal_set=False, branch_id=1, space_id=1, created_by_id=1, run_id=3, created_at=2025-07-14 06:41:48 UTC)
→ returning existing schema with same hash: Schema(uid='0000000000000000', name='single-cell image dataset schema var', description='column schema for data measured in obsm[single_cell_images]', n=-1, is_type=False, itype='Feature', hash='kMi7B_N88uu-YnbTLDU-DA', minimal_set=True, ordered_set=False, maximal_set=False, branch_id=1, space_id=1, created_by_id=1, run_id=3, created_at=2025-07-14 06:41:47 UTC)
To process all files in our dataset efficiently, we’ll create a custom image processing function.
We decorate this function with :func:~lamindb.tracked
to track data lineage of the input and output artifacts.
The function will skip files that have already been processed and uploaded, improving processing time by avoiding redundant computations.
@ln.tracked()
def process_images(
config_file_af: ln.Artifact,
input_artifacts: Iterable[ln.Artifact],
h5sc_schema: ln.Schema,
output_directory: str,
) -> None:
# Quick sanity check - all images should share metadata except channel/structure
values_to_ignore = ["channel", "imaged structure"]
first_features = input_artifacts.first().features.get_values()
shared_features = {
k: v for k, v in first_features.items() if k not in values_to_ignore
}
for artifact in input_artifacts:
artifact_features = artifact.features.get_values()
filtered_features = {
k: v for k, v in artifact_features.items() if k not in values_to_ignore
}
assert shared_features == filtered_features
# Create a unique project ID
unique_project_id = f"{shared_features['cell_line_clone']}/{shared_features['stimulation']}/{shared_features['FOV']}".replace(
" ", "_"
)
# Check if already processed
base_key = f"processed_data_imaging_use_case/{unique_project_id}"
try:
ln.Artifact.using("scportrait/examples").get(
key=f"{base_key}/single_cell_data.h5ad"
)
ln.Artifact.using("scportrait/examples").get(key=f"{base_key}/spatialdata.zarr")
print("Dataset already processed. Skipping.")
return
except ln.Artifact.DoesNotExist:
pass
# Get image paths in channel order
input_image_paths = [
input_artifacts.filter(ulabels__name=channel).one().cache()
for channel in ["DAPI", "Alexa488", "mCherry"]
]
# Setup and process project
project_location = f"{output_directory}/{unique_project_id}/scportrait_project"
Path(project_location).mkdir(parents=True, exist_ok=True)
project = Project(
project_location=project_location,
config_path=config_file_af.cache(),
segmentation_f=CytosolSegmentationCellpose,
extraction_f=HDF5CellExtraction,
overwrite=True,
)
project.load_input_from_tif_files(
input_image_paths, overwrite=True, channel_names=["DAPI", "Alexa488", "mCherry"]
)
project.segment()
project.extract()
# Save single-cell images
curator = ln.curators.AnnDataCurator(project.h5sc, h5sc_schema)
artifact = curator.save_artifact(key=f"{base_key}/single_cell_data.h5ad")
annotation = shared_features.copy()
annotation["imaged structure"] = [
ln.ULabel.using("scportrait/examples").get(name=name)
for name in ["LckLip-mNeon", "DNA", "mCherry-LC3B"]
]
artifact.features.add_values(annotation)
artifact.labels.add(ln.ULabel.get(name="scportrait single-cell images"))
# Save SpatialData object
ln.Artifact.from_spatialdata(
sdata=project.filehandler.get_sdata(),
description="scportrait spatialdata object containing results of cells stained for autophagy markers",
key=f"{base_key}/spatialdata.zarr",
).save()
ln.Param(name="output_directory", dtype="str").save()
Show code cell output
Feature(uid='TPuhDFqdFu9M', name='output_directory', dtype='str', array_rank=0, array_size=0, branch_id=1, space_id=1, created_by_id=1, run_id=3, created_at=2025-07-14 06:41:48 UTC)
Now we are ready to process all of our input images and upload the generated single-cell image datasets back to our instance.
for condition in conditions:
for cellline in cell_line_clones:
for FOV in FOVs:
images = (
input_images.filter(ulabels=condition)
.filter(ulabels=cellline)
.filter(ulabels=FOV)
.distinct()
)
if images:
process_images(
config_file_af,
input_artifacts=images,
h5sc_schema=h5sc_schema,
output_directory=output_directory,
)
Show code cell output
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='Md4OouMExlWS2YfZ0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well01_Alexa488_zstack001_r003_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='0aoXxT857VvKAGo9UQo-8g', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='CiQYTBNZrj0CPejK0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well01_DAPI_zstack001_r003_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='YRjhTt2cBLq3BukWLUKC_w', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='YGiNq6DPfIEjtt9j0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well01_mCherry_zstack001_r003_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='zptjd_tR7P2Nw6mjUWbEjw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='KKbVRkOjQ1jdA2fx0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well01_Alexa488_zstack001_r004_c007.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='Mm-DsaVdkMbTreUW_ipQBQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:24 UTC), Artifact(uid='W6tzE7JNiM80Ruho0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well01_DAPI_zstack001_r004_c007.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='9_LVWK08Z_D4c1mvIJlTOA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='uuh41FAHEz0ASL2N0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well01_mCherry_zstack001_r004_c007.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='PSnZ2s1_uJa9G4_cc2HpNw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='yiIMSAddDWgLgki70000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well01_Alexa488_zstack001_r005_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='KUhrzT6sDoICDg9cGCUkmg', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='DEzw4QQAsjVZ010b0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well01_DAPI_zstack001_r005_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='N2xVJ8pQ9jWoywub8om_iQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='hbVyCGFARHU91Kax0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well01_mCherry_zstack001_r005_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='U2Hrdj8bUugok31k_uqEuw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='2ie2Kjzn1O7UYhuq0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well01_Alexa488_zstack001_r008_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='xkGVufN-7DDAZOeh4h7LpA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='fOQSb7JCK67aeN6a0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well01_DAPI_zstack001_r008_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='aNYMykHkxezUxs-07xgikw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='qHQpdWcFu7FzF6l50000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well01_mCherry_zstack001_r008_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='_eUmLccyLWPhCAZBQ8a3zA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='jVytS8AyAHmHkYR30000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well01_Alexa488_zstack001_r001_c007.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='QFmofkisy-sibXAuKrpfRw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='cw4F6bUB9zuMthCY0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well01_DAPI_zstack001_r001_c007.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='f4Vij96NOq7M96SXfyEYXQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='7TZGXvbA0JLL68hR0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well01_mCherry_zstack001_r001_c007.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='qUKQaesz-vfPUwljqPlIjA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='vCVbKkzz4CnJPPKF0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well01_Alexa488_zstack001_r001_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='WyabAqK4jeZtTtrQ9rvUeQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:24 UTC), Artifact(uid='5kMhlcDNek4RMeQF0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well01_DAPI_zstack001_r001_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='eXaBPwLJJ--9SyGD7JR0ew', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='9BmbViqMmlVhpfS00000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well01_mCherry_zstack001_r001_c008.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='EeQ_zoM4j8waIP8wP-u0Hg', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='OS0wBE7bviIlW7qj0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well01_Alexa488_zstack001_r001_c002.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='RwasAYhkUEeTVBFrwCbKuw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='ixOpuSTsyrPXdYuA0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well01_DAPI_zstack001_r001_c002.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='diUYJPHgU_SvK0zTrrzUlw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='6uMjKAk1aYlAV7Cf0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well01_mCherry_zstack001_r001_c002.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='9K0N7dMe59K6zYUtjE74cA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:24 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='9ZVngbl0JUS0XdZ70000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well01_Alexa488_zstack001_r001_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='W1Q1RQCUj7j4e9R5Sta4wQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='IzP3IAwIhmM7OORD0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well01_DAPI_zstack001_r001_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='dIUw6okO0jOq6JcgsxDktA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='RRVS8qVx3VSw02Xu0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well01_mCherry_zstack001_r001_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='9ZmlWOdgh9GFPd4BCYO7GQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='Gtwi9Pcyx8maQEWB0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well08_Alexa488_zstack001_r002_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='yJMlFFYyup0JmBu_FjTa3g', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:24 UTC), Artifact(uid='sHHpiiFYWsIXMZNV0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well08_DAPI_zstack001_r002_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='6pvuFREF3CQ8xr8Urak52Q', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='hNMkrIHce1XrLZHY0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well08_mCherry_zstack001_r002_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='K1jGiIE0dljR_qYP1btlyw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='nSZhAypqiNZ2Ylbe0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well08_Alexa488_zstack001_r002_c010.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='uh537K7rMhMNKW-mti1vjw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='jzqxtoduIJ3hCbB40000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well08_DAPI_zstack001_r002_c010.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='SOxM7EH80KPXK3hzBxXYLg', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:24 UTC), Artifact(uid='M06liaIzh2OVEuJ40000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row01_Well08_mCherry_zstack001_r002_c010.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='0tV4uQYxnP6G8JOrAwMyXw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='mXWwV1x42Jz9RoSO0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well08_Alexa488_zstack001_r002_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='4xc4bpAMo0UaM_tc8SciIA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='gj0HHnoVpEqbaUJb0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well08_DAPI_zstack001_r002_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='fZ4W2ePHagfGUGCcve98gQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='1XnEyqVt6UGXCTmV0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well08_mCherry_zstack001_r002_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='if3WCKH91_CY0ptIVYuLmA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='Ov8FnKzHMNY0XVJa0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well08_Alexa488_zstack001_r002_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='5cfc02GejBaoJ0h3OLWSdw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='Lwk8shsYe0V5bMgd0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well08_DAPI_zstack001_r002_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='CmAa139DH_lQ2Plcy4BxXw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='YuyVn060M4FxATPz0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row02_Well08_mCherry_zstack001_r002_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='gZHwk76xPz7qXiST4RuVMQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='ThuJnRAhqkp54kyU0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well08_Alexa488_zstack001_r010_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='vs3t8d40w259zgJRltHlKA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='PquYNyshQTDd24Vw0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well08_DAPI_zstack001_r010_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='1mSZ_MMg393bfTvMOl3YMQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='8SFUmW0RhBNySxBO0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well08_mCherry_zstack001_r010_c009.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='fjO8ly0euUPHXoQd86weww', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='h4EKWveW36LIzXez0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well08_Alexa488_zstack001_r010_c010.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='ZPUWq_TI3KWNcVeVz3vOPg', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='fdem35nw5ztUnEIM0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well08_DAPI_zstack001_r010_c010.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='XuugTTV9S5TbJKVMLOaR0w', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='VkmKLUCaMsYFCuGE0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row03_Well08_mCherry_zstack001_r010_c010.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='A-MzQvq-kHeu1WHdVmm5bw', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='QDPX1ljp0eCMz80o0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well08_Alexa488_zstack001_r001_c003.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='Y1bgVRJGzIEhKFGP54fplA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:24 UTC), Artifact(uid='Cvamog4G3a2XYGM80000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well08_DAPI_zstack001_r001_c003.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='UFjAP7uBiaM9ivE4hJzHTA', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='6uUjyphUD4D1Hixc0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well08_mCherry_zstack001_r001_c003.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='lvFoCpbAkjg4mEtXx-D99w', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
! cannot infer feature type of: <ArtifactQuerySet [Artifact(uid='Oww4y0yYuR8pxV9q0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well08_Alexa488_zstack001_r001_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='YX1aIPYndKFiPl5W3OPqfQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='AhBvnNKg5yJcG6LU0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well08_DAPI_zstack001_r001_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='9I6amjQc298AZvER1Z2jjQ', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC), Artifact(uid='AVRTVX9gEu4LrTAP0000', is_latest=True, key='input_data_imaging_usecase/images/Timepoint001_Row04_Well08_mCherry_zstack001_r001_c005.tif', description='raw image of U2OS cells stained for autophagy markers', suffix='.tif', size=2333056, hash='rYoK8xKXBtx5aNW4AfUbUg', branch_id=1, space_id=1, storage_id=2, run_id=2, created_by_id=1, created_at=2025-03-07 13:51:25 UTC)]>, returning '?
Dataset already processed. Skipping.
example_artifact = ln.Artifact.filter(
ulabels=ln.ULabel.get(name="scportrait single-cell images")
).first()
example_artifact.view_lineage()
ln.finish()
Show code cell output
→ finished Run('vp9td0Zk') after 1m at 2025-07-14 06:41:54 UTC