Jupyter Notebook

Curate and ingest spatial data

Now that we’ve analyzed and visualized the example dataset in the previous notebooks, let’s learn how to curate and ingest our own spatial data.

import lamindb as ln
import bionty as bt
import spatialdata as sd

ln.track()
Hide code cell output
 connected lamindb: testuser1/test-spatial
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/xarray_schema/__init__.py:1: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
  from pkg_resources import DistributionNotFound, get_distribution
 created Transform('aGMYMcsFfXNC0000', key='spatial3.ipynb'), started new Run('9LpBMHogFyj7JLyJ') at 2025-12-17 19:52:23 UTC
 notebook imports: bionty==1.10.0 lamindb==1.17.0 spatialdata==0.6.1
 recommendation: to identify the notebook across renames, pass the uid: ln.track("aGMYMcsFfXNC")

Creating artifacts

You can use from_spatialdata() method to create an Artifact object from a SpatialData object.

example_blobs_sdata = ln.core.datasets.spatialdata_blobs()
example_blobs_sdata
Hide code cell output
SpatialData object
├── Images
│     ├── 'blobs_image': DataArray[cyx] (3, 512, 512)
│     └── 'blobs_multiscale_image': DataTree[cyx] (3, 512, 512), (3, 256, 256), (3, 128, 128)
├── Labels
│     ├── 'blobs_labels': DataArray[yx] (512, 512)
│     └── 'blobs_multiscale_labels': DataTree[yx] (512, 512), (256, 256), (128, 128)
├── Points
│     └── 'blobs_points': DataFrame with shape: (<Delayed>, 4) (2D points)
├── Shapes
│     ├── 'blobs_circles': GeoDataFrame shape: (5, 2) (2D shapes)
│     ├── 'blobs_multipolygons': GeoDataFrame shape: (2, 1) (2D shapes)
│     └── 'blobs_polygons': GeoDataFrame shape: (5, 1) (2D shapes)
└── Tables
      └── 'table': AnnData (26, 3)
with coordinate systems:
    ▸ 'global', with elements:
        blobs_image (Images), blobs_multiscale_image (Images), blobs_labels (Labels), blobs_multiscale_labels (Labels), blobs_points (Points), blobs_circles (Shapes), blobs_multipolygons (Shapes), blobs_polygons (Shapes)
blobs_af = ln.Artifact.from_spatialdata(
    example_blobs_sdata, key="example_blobs.zarr"
).save()
blobs_af
Hide code cell output
 writing the in-memory object into cache
Artifact(uid='VGPsp2roREcLBm4E0000', version=None, is_latest=True, key='example_blobs.zarr', description=None, suffix='.zarr', kind='dataset', otype='SpatialData', size=13054761, hash='UYT7tNtrjsPUywOuZcOUqQ', n_files=79, n_observations=None, branch_id=1, space_id=1, storage_id=2, run_id=3, schema_id=None, created_by_id=2, created_at=2025-12-17 19:52:26 UTC, is_locked=False)

To retrieve the object back from the database you can, e.g., query by key:

example_blobs_sdata = ln.Artifact.get(key="example_blobs.zarr")
local_zarr_path = blobs_af.cache()  # returns a local path to the cached .zarr store
example_blobs_sdata = (
    blobs_af.load()  # calls sd.read_zarr() on a locally cached .zarr store
)

To see data lineage:

blobs_af.view_lineage()
Hide code cell output
_images/4a7e40b4f8d51a1df070478ca00764ba9797bf9290b66c6a50333a84ec2eed08.svg

Curating artifacts

For the remainder of the guide, we will work with two 10X Xenium and a 10X Visium H&E image datasets that were ingested in raw form here.

Metadata is stored in two places in the SpatialData object:

  1. Dataset level metadata is stored in sdata.attrs["sample"].

  2. Measurement specific metadata is stored in the associated tables in sdata.tables.

Define a schema

We define a lamindb.Schema to curate both sample and table metadata.

Curating different spatial technologies

Reading different spatial technologies into SpatialData objects can result in very different objects with different metadata. Therefore, it can be useful to define technology specific Schemas by reusing Schema components.

# define features
ln.Feature(name="organism", dtype=bt.Organism).save()
ln.Feature(name="assay", dtype=bt.ExperimentalFactor).save()
ln.Feature(name="disease", dtype=bt.Disease).save()
ln.Feature(name="tissue", dtype=bt.Tissue).save()
ln.Feature(name="celltype_major", dtype=bt.CellType).save()

# define simple schemas
flexible_metadata_schema = ln.Schema(
    name="Flexible metadata", itype=ln.Feature, coerce_dtype=True
).save()
ensembl_gene_ids = ln.Schema(
    name="Spatial var level (Ensembl gene id)", itype=bt.Gene.ensembl_gene_id
).save()

# define composite schema
spatial_schema = ln.Schema(
    name="Spatialdata schema (flexible)",
    otype="SpatialData",
    slots={
        "attrs:sample": flexible_metadata_schema,
        "tables:table:obs": flexible_metadata_schema,
        "tables:table:var.T": ensembl_gene_ids,
    },
).save()

Curate a Xenium dataset

Create the central query object of our public lamindata instance:

db = ln.DB("laminlabs/lamindata")
# load first of two cropped Xenium datasets
xenium_aligned_1_sdata = db.Artifact.get(key="xenium_aligned_1_guide_min.zarr").load()
xenium_aligned_1_sdata
Hide code cell output
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/lamindb/core/storage/_zarr.py:119: UserWarning: SpatialData is not stored in the most current format. If you want to use Zarr v3, please write the store to a new location using `sdata.write()`.
  scverse_obj = with_package("spatialdata", lambda mod: mod.read_zarr(store))
 transferred: Artifact(uid='kVMuYil81BHTwQ9G0001')
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/zarr/core/group.py:3535: ZarrUserWarning: Object at zmetadata is not recognized as a component of a Zarr hierarchy.
  warnings.warn(
SpatialData object, with associated Zarr store: /home/runner/.cache/lamindb/lamindata/xenium_aligned_1_guide_min.zarr
├── Images
│     ├── 'morphology_focus': DataTree[cyx] (1, 2310, 3027), (1, 1155, 1514), (1, 578, 757), (1, 288, 379), (1, 145, 189)
│     └── 'morphology_mip': DataTree[cyx] (1, 2310, 3027), (1, 1155, 1514), (1, 578, 757), (1, 288, 379), (1, 145, 189)
├── Points
│     └── 'transcripts': DataFrame with shape: (<Delayed>, 8) (3D points)
├── Shapes
│     ├── 'cell_boundaries': GeoDataFrame shape: (1899, 1) (2D shapes)
│     └── 'cell_circles': GeoDataFrame shape: (1812, 2) (2D shapes)
└── Tables
      └── 'table': AnnData (1812, 313)
with coordinate systems:
    ▸ 'aligned', with elements:
        morphology_focus (Images), morphology_mip (Images), transcripts (Points), cell_boundaries (Shapes), cell_circles (Shapes)
    ▸ 'global', with elements:
        morphology_focus (Images), morphology_mip (Images), transcripts (Points), cell_boundaries (Shapes), cell_circles (Shapes)
xenium_curator = ln.curators.SpatialDataCurator(xenium_aligned_1_sdata, spatial_schema)
try:
    xenium_curator.validate()
except ln.errors.ValidationError as error:
    print(error)
Hide code cell output
! 1 term not validated in feature 'columns' in slot 'attrs:sample': 'panel'
    → fix typos, remove non-existent values, or save terms via: curator.slots['attrs:sample'].cat.add_new_from('columns')
! 10 terms not validated in feature 'columns' in slot 'tables:table:obs': 'control_probe_counts', 'transcript_counts', 'control_codeword_counts', 'celltype_minor', 'dataset', 'cell_area', 'cell_id', 'total_counts', 'region', 'nucleus_area'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('columns')
! 9 terms not validated in feature 'celltype_major' in slot 'tables:table:obs': 'CAFs', 'Endothelial', 'Myeloid', 'PVL', 'T-cells', 'B-cells', 'Normal Epithelial', 'Plasmablasts', 'Cancer Epithelial'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('celltype_major')
9 terms not validated in feature 'celltype_major' in slot 'tables:table:obs': 'CAFs', 'Endothelial', 'Myeloid', 'PVL', 'T-cells', 'B-cells', 'Normal Epithelial', 'Plasmablasts', 'Cancer Epithelial'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('celltype_major')
xenium_aligned_1_sdata.tables["table"].obs["celltype_major"] = (
    xenium_aligned_1_sdata.tables["table"]
    .obs["celltype_major"]
    .replace(
        {
            "CAFs": "cancer associated fibroblast",
            "Endothelial": "endothelial cell",
            "Myeloid": "myeloid cell",
            "PVL": "perivascular cell",
            "T-cells": "T cell",
            "B-cells": "B cell",
            "Normal Epithelial": "epithelial cell",
            "Plasmablasts": "plasmablast",
            "Cancer Epithelial": "neoplastic epithelial cell",
        }
    )
)
Hide code cell output
/tmp/ipykernel_3006/4072479217.py:4: FutureWarning: The behavior of Series.replace (and DataFrame.replace) with CategoricalDtype is deprecated. In a future version, replace will only be used for cases that preserve the categories. To change the categories, use ser.cat.rename_categories instead.
  .replace(
try:
    xenium_curator.validate()
except ln.errors.ValidationError as error:
    print(error)
Hide code cell output
! 1 term not validated in feature 'columns' in slot 'attrs:sample': 'panel'
    → fix typos, remove non-existent values, or save terms via: curator.slots['attrs:sample'].cat.add_new_from('columns')
! 10 terms not validated in feature 'columns' in slot 'tables:table:obs': 'control_probe_counts', 'transcript_counts', 'control_codeword_counts', 'celltype_minor', 'dataset', 'cell_area', 'cell_id', 'total_counts', 'region', 'nucleus_area'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('columns')
! 2 terms not validated in feature 'celltype_major' in slot 'tables:table:obs': 'cancer associated fibroblast', 'neoplastic epithelial cell'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('celltype_major')
2 terms not validated in feature 'celltype_major' in slot 'tables:table:obs': 'cancer associated fibroblast', 'neoplastic epithelial cell'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('celltype_major')
xenium_curator.slots["tables:table:obs"].cat.add_new_from("celltype_major")
xenium_1_curated_af = xenium_curator.save_artifact(key="xenium1.zarr")
Hide code cell output
! 1 term not validated in feature 'columns' in slot 'attrs:sample': 'panel'
    → fix typos, remove non-existent values, or save terms via: curator.slots['attrs:sample'].cat.add_new_from('columns')
! 10 terms not validated in feature 'columns' in slot 'tables:table:obs': 'control_probe_counts', 'transcript_counts', 'control_codeword_counts', 'celltype_minor', 'dataset', 'cell_area', 'cell_id', 'total_counts', 'region', 'nucleus_area'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('columns')
 writing the in-memory object into cache
xenium_1_curated_af.describe()
Hide code cell output
Artifact: xenium1.zarr (0000)
├── uid: xNkTj5sa1KiOZsiW0000            run: 9LpBMHo (spatial3.ipynb)
kind: dataset                        otype: SpatialData           
hash: P76s8TuZgc5dcOKQc_R-tQ         size: 34.8 MB                
branch: main                         space: all                   
created_at: 2025-12-17 19:52:40 UTC  created_by: testuser1        
n_files: 101                                                      
├── storage/path: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-spatial/.lamindb/xNkTj5sa1KiOZsiW.zarr
├── Dataset features
├── attrs:sample (4)                                                                                           
│   assay                           bionty.ExperimentalFactor          10x Xenium                              
│   disease                         bionty.Disease                     ductal breast carcinoma in situ         
│   organism                        bionty.Organism                    human                                   
│   tissue                          bionty.Tissue                      breast                                  
├── tables:table:obs (1)                                                                                       
│   celltype_major                  bionty.CellType                    B cell, T cell, cancer associated fibro…
└── tables:table:var.T (313 biont…                                                                             
    ABCC11                          num                                                                        
    ACTA2                           num                                                                        
    ACTG2                           num                                                                        
    ADAM9                           num                                                                        
    ADGRE5                          num                                                                        
    ADH1B                           num                                                                        
    ADIPOQ                          num                                                                        
    AGR3                            num                                                                        
    AHSP                            num                                                                        
    AIF1                            num                                                                        
    AKR1C1                          num                                                                        
    AKR1C3                          num                                                                        
    ALDH1A3                         num                                                                        
    ANGPT2                          num                                                                        
    ANKRD28                         num                                                                        
    ANKRD29                         num                                                                        
    ANKRD30A                        num                                                                        
    APOBEC3A                        num                                                                        
    APOBEC3B                        num                                                                        
    APOC1                           num                                                                        
└── Labels
    └── .organisms                      bionty.Organism                    human                                   
        .tissues                        bionty.Tissue                      breast                                  
        .cell_types                     bionty.CellType                    endothelial cell, myeloid cell, perivas…
        .diseases                       bionty.Disease                     ductal breast carcinoma in situ         
        .experimental_factors           bionty.ExperimentalFactor          10x Xenium                              

Curate additional Xenium datasets

We can reuse the same curator for a second Xenium dataset:

xenium_aligned_2_sdata = db.Artifact.get(key="xenium_aligned_2_guide_min.zarr").load()

xenium_aligned_2_sdata.tables["table"].obs["celltype_major"] = (
    xenium_aligned_2_sdata.tables["table"]
    .obs["celltype_major"]
    .replace(
        {
            "CAFs": "cancer associated fibroblast",
            "Endothelial": "endothelial cell",
            "Myeloid": "myeloid cell",
            "PVL": "perivascular cell",
            "T-cells": "T cell",
            "B-cells": "B cell",
            "Normal Epithelial": "epithelial cell",
            "Plasmablasts": "plasmablast",
            "Cancer Epithelial": "neoplastic epithelial cell",
        }
    )
)
Hide code cell output
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/lamindb/core/storage/_zarr.py:119: UserWarning: SpatialData is not stored in the most current format. If you want to use Zarr v3, please write the store to a new location using `sdata.write()`.
  scverse_obj = with_package("spatialdata", lambda mod: mod.read_zarr(store))
no parent found for <ome_zarr.reader.Label object at 0x7f7837ff75f0>: None
no parent found for <ome_zarr.reader.Label object at 0x7f7837ff7710>: None
 transferred: Artifact(uid='KFhRNPqcdoxBCNZt0001')
/tmp/ipykernel_3006/980259403.py:6: FutureWarning: The behavior of Series.replace (and DataFrame.replace) with CategoricalDtype is deprecated. In a future version, replace will only be used for cases that preserve the categories. To change the categories, use ser.cat.rename_categories instead.
  .replace(
xenium_2_curated_af = ln.Artifact.from_spatialdata(
    xenium_aligned_2_sdata, key="xenium2.zarr", schema=spatial_schema
).save()
Hide code cell output
 writing the in-memory object into cache
 loading artifact into memory for validation
! 1 term not validated in feature 'columns' in slot 'attrs:sample': 'panel'
    → fix typos, remove non-existent values, or save terms via: curator.slots['attrs:sample'].cat.add_new_from('columns')
! 10 terms not validated in feature 'columns' in slot 'tables:table:obs': 'control_probe_counts', 'transcript_counts', 'control_codeword_counts', 'celltype_minor', 'dataset', 'cell_area', 'cell_id', 'total_counts', 'region', 'nucleus_area'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('columns')
 returning schema with same hash: Schema(uid='PVaj40knBKNnn3nU', name=None, description=None, n=4, is_type=False, itype='Feature', otype=None, dtype=None, hash='hNDrqhdqN5aMV9KR2MLqjw', minimal_set=True, ordered_set=False, maximal_set=False, slot=None, branch_id=1, space_id=1, created_by_id=2, run_id=3, type_id=None, validated_by_id=None, composite_id=None, created_at=2025-12-17 19:52:40 UTC, is_locked=False)
 returning schema with same hash: Schema(uid='aKzEHeLtRUbfnhkC', name=None, description=None, n=1, is_type=False, itype='Feature', otype=None, dtype=None, hash='76eubvhExlwt0PlQ6P92lQ', minimal_set=True, ordered_set=False, maximal_set=False, slot=None, branch_id=1, space_id=1, created_by_id=2, run_id=3, type_id=None, validated_by_id=None, composite_id=None, created_at=2025-12-17 19:52:41 UTC, is_locked=False)
 returning schema with same hash: Schema(uid='2guB8oYQJYnVq3im', name=None, description=None, n=313, is_type=False, itype='bionty.Gene.ensembl_gene_id', otype=None, dtype='num', hash='FFFt-2qmlVALrsMUPNoH0g', minimal_set=True, ordered_set=False, maximal_set=False, slot=None, branch_id=1, space_id=1, created_by_id=2, run_id=3, type_id=None, validated_by_id=None, composite_id=None, created_at=2025-12-17 19:52:41 UTC, is_locked=False)
xenium_2_curated_af.describe()
Hide code cell output
Artifact: xenium2.zarr (0000)
├── uid: BMsyvZqOpJBNrDNR0000            run: 9LpBMHo (spatial3.ipynb)
kind: dataset                        otype: SpatialData           
hash: qo8rAMluoKIz9pSBYknGkQ         size: 36.8 MB                
branch: main                         space: all                   
created_at: 2025-12-17 19:52:45 UTC  created_by: testuser1        
n_files: 126                                                      
├── storage/path: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-spatial/.lamindb/BMsyvZqOpJBNrDNR.zarr
├── Dataset features
├── attrs:sample (4)                                                                                           
│   assay                           bionty.ExperimentalFactor          10x Xenium                              
│   disease                         bionty.Disease                     ductal breast carcinoma in situ         
│   organism                        bionty.Organism                    human                                   
│   tissue                          bionty.Tissue                      breast                                  
├── tables:table:obs (1)                                                                                       
│   celltype_major                  bionty.CellType                    B cell, T cell, cancer associated fibro…
└── tables:table:var.T (313 biont…                                                                             
    ABCC11                          num                                                                        
    ACTA2                           num                                                                        
    ACTG2                           num                                                                        
    ADAM9                           num                                                                        
    ADGRE5                          num                                                                        
    ADH1B                           num                                                                        
    ADIPOQ                          num                                                                        
    AGR3                            num                                                                        
    AHSP                            num                                                                        
    AIF1                            num                                                                        
    AKR1C1                          num                                                                        
    AKR1C3                          num                                                                        
    ALDH1A3                         num                                                                        
    ANGPT2                          num                                                                        
    ANKRD28                         num                                                                        
    ANKRD29                         num                                                                        
    ANKRD30A                        num                                                                        
    APOBEC3A                        num                                                                        
    APOBEC3B                        num                                                                        
    APOC1                           num                                                                        
└── Labels
    └── .organisms                      bionty.Organism                    human                                   
        .tissues                        bionty.Tissue                      breast                                  
        .cell_types                     bionty.CellType                    endothelial cell, myeloid cell, perivas…
        .diseases                       bionty.Disease                     ductal breast carcinoma in situ         
        .experimental_factors           bionty.ExperimentalFactor          10x Xenium                              

Curate Visium datasets

Analogously, we can define a Schema and Curator for Visium datasets:

visium_aligned_sdata = db.Artifact.get(key="visium_aligned_guide_min.zarr").load()
visium_aligned_sdata
Hide code cell output
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/lamindb/core/storage/_zarr.py:119: UserWarning: SpatialData is not stored in the most current format. If you want to use Zarr v3, please write the store to a new location using `sdata.write()`.
  scverse_obj = with_package("spatialdata", lambda mod: mod.read_zarr(store))
 transferred: Artifact(uid='bjH534dxVi1drmLZ0001')
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/zarr/core/group.py:3535: ZarrUserWarning: Object at zmetadata is not recognized as a component of a Zarr hierarchy.
  warnings.warn(
SpatialData object, with associated Zarr store: /home/runner/.cache/lamindb/lamindata/visium_aligned_guide_min.zarr
├── Images
│     ├── 'CytAssist_FFPE_Human_Breast_Cancer_full_image': DataTree[cyx] (3, 1213, 952), (3, 607, 476), (3, 303, 238), (3, 152, 119), (3, 76, 60)
│     ├── 'CytAssist_FFPE_Human_Breast_Cancer_hires_image': DataArray[cyx] (3, 113, 88)
│     └── 'CytAssist_FFPE_Human_Breast_Cancer_lowres_image': DataArray[cyx] (3, 34, 27)
├── Shapes
│     └── 'CytAssist_FFPE_Human_Breast_Cancer': GeoDataFrame shape: (37, 2) (2D shapes)
└── Tables
      └── 'table': AnnData (37, 18085)
with coordinate systems:
    ▸ 'aligned', with elements:
        CytAssist_FFPE_Human_Breast_Cancer_full_image (Images), CytAssist_FFPE_Human_Breast_Cancer_hires_image (Images), CytAssist_FFPE_Human_Breast_Cancer_lowres_image (Images), CytAssist_FFPE_Human_Breast_Cancer (Shapes)
    ▸ 'downscaled_hires', with elements:
        CytAssist_FFPE_Human_Breast_Cancer_hires_image (Images), CytAssist_FFPE_Human_Breast_Cancer (Shapes)
    ▸ 'downscaled_lowres', with elements:
        CytAssist_FFPE_Human_Breast_Cancer_lowres_image (Images), CytAssist_FFPE_Human_Breast_Cancer (Shapes)
    ▸ 'global', with elements:
        CytAssist_FFPE_Human_Breast_Cancer_full_image (Images), CytAssist_FFPE_Human_Breast_Cancer_hires_image (Images), CytAssist_FFPE_Human_Breast_Cancer_lowres_image (Images), CytAssist_FFPE_Human_Breast_Cancer (Shapes)
visium_curated_af = ln.Artifact.from_spatialdata(
    visium_aligned_sdata, key="visium.zarr", schema=spatial_schema
).save()
Hide code cell output
 writing the in-memory object into cache
 loading artifact into memory for validation
! 7 terms not validated in feature 'columns' in slot 'tables:table:obs': 'spot_id', 'dataset', 'in_tissue', 'clone', 'array_col', 'region', 'array_row'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:obs'].cat.add_new_from('columns')
! no values were validated for columns!
 starting creation of 17761 Gene records in batches of 10000
! 17 terms not validated in feature 'columns' in slot 'tables:table:var.T': 'ENSG00000284824', 'ENSG00000240224', 'ENSG00000243135', 'ENSG00000112096', 'ENSG00000285162', 'ENSG00000183729', 'ENSG00000285447', 'ENSG00000130723', 'ENSG00000274897', 'ENSG00000215271', 'ENSG00000221995', 'ENSG00000183791', 'ENSG00000263264', 'ENSG00000182584', 'ENSG00000184258', 'ENSG00000277203', 'ENSG00000286265'
    → fix typos, remove non-existent values, or save terms via: curator.slots['tables:table:var.T'].cat.add_new_from('columns')
 returning schema with same hash: Schema(uid='PVaj40knBKNnn3nU', name=None, description=None, n=4, is_type=False, itype='Feature', otype=None, dtype=None, hash='hNDrqhdqN5aMV9KR2MLqjw', minimal_set=True, ordered_set=False, maximal_set=False, slot=None, branch_id=1, space_id=1, created_by_id=2, run_id=3, type_id=None, validated_by_id=None, composite_id=None, created_at=2025-12-17 19:52:40 UTC, is_locked=False)
 returning schema with same hash: Schema(uid='RnZuIefNHdqVcu2R', name='Flexible metadata', description=None, is_type=False, itype='Feature', otype=None, dtype=None, hash='jKTX5yzmVwIdJdHH2ZfMAA', minimal_set=True, ordered_set=False, maximal_set=False, slot=None, branch_id=1, space_id=1, created_by_id=2, run_id=3, type_id=None, validated_by_id=None, composite_id=None, created_at=2025-12-17 19:52:27 UTC, is_locked=False)
 not annotating with 18068 features for slot tables:table:var.T as it exceeds 1000 (ln.settings.annotation.n_max_records)
visium_curated_af.describe()
Hide code cell output
Artifact: visium.zarr (0000)
├── uid: AmmYOyTfDdUnrrly0000            run: 9LpBMHo (spatial3.ipynb)
kind: dataset                        otype: SpatialData           
hash: 0HOmjAWXse6k_bwavGFN7Q         size: 4.4 MB                 
branch: main                         space: all                   
created_at: 2025-12-17 19:52:56 UTC  created_by: testuser1        
n_files: 91                                                       
├── storage/path: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-spatial/.lamindb/AmmYOyTfDdUnrrly.zarr
├── Dataset features
├── attrs:sample (4)                                                                                           
│   assay                           bionty.ExperimentalFactor          Visium Spatial Gene Expression          
│   disease                         bionty.Disease                     ductal breast carcinoma in situ         
│   organism                        bionty.Organism                    human                                   
│   tissue                          bionty.Tissue                      breast                                  
├── tables:table:obs (-1)                                                                                      
└── tables:table:var.T (18068 bio…                                                                             
└── Labels
    └── .organisms                      bionty.Organism                    human                                   
        .tissues                        bionty.Tissue                      breast                                  
        .diseases                       bionty.Disease                     ductal breast carcinoma in situ         
        .experimental_factors           bionty.ExperimentalFactor          Visium Spatial Gene Expression          

Overview of the curated datasets

visium_curated_af.view_lineage()
_images/5a3ea24debf0e14319ddc98693acef678b80eb43674d321604a76f58ff7b7e99.svg
ln.Artifact.to_dataframe(features=True, include=["hash", "size"])
Hide code cell output
 queried for all categorical features of dtypes Record or ULabel and non-categorical features: (0) []
uid key hash size
id
10 AmmYOyTfDdUnrrly0000 visium.zarr 0HOmjAWXse6k_bwavGFN7Q 4650604
9 bjH534dxVi1drmLZ0001 visium_aligned_guide_min.zarr a8rVkf_kjp9To9KI06i03g 5809684
8 BMsyvZqOpJBNrDNR0000 xenium2.zarr qo8rAMluoKIz9pSBYknGkQ 38639497
7 KFhRNPqcdoxBCNZt0001 xenium_aligned_2_guide_min.zarr oH569Lh4koYRB1I6AatnGQ 40822308
6 xNkTj5sa1KiOZsiW0000 xenium1.zarr P76s8TuZgc5dcOKQc_R-tQ 36540950
5 kVMuYil81BHTwQ9G0001 xenium_aligned_1_guide_min.zarr 8f1qC6IkpSvFw2H8TdhplQ 35115305
4 VGPsp2roREcLBm4E0000 example_blobs.zarr UYT7tNtrjsPUywOuZcOUqQ 13054761
1 8sPWscz3SICG1D8t0001 xenium/2.0.0/Xenium_V1_humanLung_Cancer_FFPE_o... jgalhtHw00CzuZA_jrTygw 7045222972
ln.finish()
Hide code cell output
 finished Run('9LpBMHogFyj7JLyJ') after 33s at 2025-12-17 19:52:57 UTC