scrna6/6

Concatenate datasets to a single array store

In the previous notebooks, we’ve seen how to incrementally create a collection of scRNA-seq datasets and train models on it.

Sometimes we want to concatenate all datasets into one big array to speed up ad-hoc queries for slices for arbitrary metadata.

This is also what CELLxGENE does to create Census: a number of .h5ad files are concatenated to give rise to a single tiledbsoma array store (CELLxGENE: scRNA-seq).

import lamindb as ln
import pandas as pd
import scanpy as sc
import tiledbsoma.io
from functools import reduce

ln.track("oJN8WmVrxI8m0000")
Hide code cell output
→ connected lamindb: testuser1/test-scrna
/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/site-packages/anndata/utils.py:429: FutureWarning: Importing CSCDataset from `anndata.experimental` is deprecated. Import anndata.abc.CSCDataset instead.
  warnings.warn(msg, FutureWarning)
/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/site-packages/anndata/utils.py:429: FutureWarning: Importing CSRDataset from `anndata.experimental` is deprecated. Import anndata.abc.CSRDataset instead.
  warnings.warn(msg, FutureWarning)
→ created Transform('oJN8WmVr'), started new Run('yO7idoWZ') at 2024-11-21 06:54:39 UTC
→ notebook imports: lamindb==0.76.16 pandas==2.2.3 scanpy==1.10.4 tiledbsoma==1.15.0rc3

Query the collection of h5ad files that we’d like to concatenate into a single array.

collection = ln.Collection.get(name="My versioned scRNA-seq collection", version="2")
collection.describe()
Hide code cell output
Collection(uid='6HBgmdrV4xz24AVj0001', version='2', is_latest=True, name='My versioned scRNA-seq collection', hash='PPKf6IQ4SPZoY0yMQQfI6w', visibility=1, created_at=2024-11-21 06:54:05 UTC)
  Provenance
    .created_by = 'testuser1'
    .transform = 'Standardize and append a dataset'
    .run = 2024-11-21 06:53:45 UTC
  Usage
    .input_of_runs = 2024-11-21 06:54:15 UTC, 2024-11-21 06:54:32 UTC

Prepare the AnnData objects

To concatenate the AnnData objects into a single tiledbsoma.Experiment, they need to have the same .var and .obs columns.

# load a number of AnnData objects that's small enough to fit into memory
adatas = [artifact.load() for artifact in collection.ordered_artifacts]

# compute the intersection of columns for these objects
var_columns = reduce(
    pd.Index.intersection, [adata.var.columns for adata in adatas]
)  # this only affects metadata columns of features (say, gene annotations)
var_raw_columns = reduce(
    pd.Index.intersection, [adata.raw.var.columns for adata in adatas]
)
obs_columns = reduce(
    pd.Index.intersection, [adata.obs.columns for adata in adatas]
)  # this actually subsets features (dataset dimensions)

Prepare the AnnData objects for concatenation. Prepare id fields, sanitize index names, intersect columns, drop .obsp, .uns and columns that aren’t part of the intersection.

for i, adata in enumerate(adatas):
    del adata.obsp  # not supported by tiledbsoma
    del adata.uns  # not supported by tiledbsoma

    adata.obs = adata.obs.filter(obs_columns)  # filter columns to intersection
    adata.obs["obs_id"] = (
        adata.obs.index
    )  # prepare a column for tiledbsoma to use as an index
    adata.obs["dataset"] = i
    adata.obs.index.name = None

    adata.var = adata.var.filter(var_columns)  # filter columns to intersection
    adata.var["var_id"] = adata.var.index
    adata.var.index.name = None

    drop_raw_var_columns = adata.raw.var.columns.difference(var_raw_columns)
    adata.raw.var.drop(columns=drop_raw_var_columns, inplace=True)
    adata.raw.var["var_id"] = adata.raw.var.index
    adata.raw.var.index.name = None

Create the array store

Save the AnnData objects in one array store referenced by an Artifact.

soma_artifact = ln.integrations.save_tiledbsoma_experiment(
    adatas,
    description="tiledbsoma experiment",
    measurement_name="RNA",
    obs_id_name="obs_id",
    var_id_name="var_id",
    append_obsm_varm=True,
)

Note

Provenance is tracked by writing the current run.uid to tiledbsoma.Experiment.obs as lamin_run_uid.

If you know tiledbsoma API, then note that save_tiledbsoma_experiment() abstracts over both tiledbsoma.io.register_anndatas and tiledbsoma.io.from_anndata.

Query the array store

Here we query the obs from the array store.

with soma_artifact.open() as soma_store:
    obs = soma_store["obs"]
    var = soma_store["ms"]["RNA"]["var"]

    obs_columns_store = obs.schema.names
    var_columns_store = var.schema.names

    obs_store_df = obs.read().concat().to_pandas()

    display(obs_store_df)
Hide code cell output
soma_joinid cell_type obs_id dataset lamin_run_uid
0 0 classical monocyte CZINY-0109_CTGGTCTAGTCTGTAC 0 yO7idoWZDECgHGxgeXhV
1 1 T follicular helper cell CZI-IA10244332+CZI-IA10244434_CCTTCGACATACTCTT 0 yO7idoWZDECgHGxgeXhV
2 2 memory B cell Pan_T7935491_CTGGTCTGTACATGTC 0 yO7idoWZDECgHGxgeXhV
3 3 alveolar macrophage Pan_T7980367_GGGCATCCAGGTGGAT 0 yO7idoWZDECgHGxgeXhV
4 4 naive thymus-derived CD4-positive, alpha-beta ... Pan_T7935494_ATCATGGTCTACCTGC 0 yO7idoWZDECgHGxgeXhV
... ... ... ... ... ...
1713 1713 CD8-positive, CD25-positive, alpha-beta regula... CAGACAACAAAACG-7 1 yO7idoWZDECgHGxgeXhV
1714 1714 effector memory CD4-positive, alpha-beta T cel... ACAGTGTGTACTGG-3 1 yO7idoWZDECgHGxgeXhV
1715 1715 CD8-positive, CD25-positive, alpha-beta regula... GAGGGTGACCTATT-1 1 yO7idoWZDECgHGxgeXhV
1716 1716 CD16-positive, CD56-dim natural killer cell, h... AGTAATTGGCTTAG-3 1 yO7idoWZDECgHGxgeXhV
1717 1717 CD38-high pre-BCR positive cell AATGAGGATGGTTG-4 1 yO7idoWZDECgHGxgeXhV

1718 rows × 5 columns

Append to the array store

Prepare a new AnnData object to be appended to the store.

ln.core.datasets.anndata_with_obs().write_h5ad("adata_to_append.h5ad")
!lamin save adata_to_append.h5ad --description "adata to append"
Hide code cell output
→ connected lamindb: testuser1/test-scrna
→ saved: Artifact(uid='xwzXDVx0UJhrno0U0000', is_latest=True, description='adata to append', suffix='.h5ad', size=46992, hash='IJORtcQUSS11QBqD-nTD0A', _hash_type='md5', _accessor='AnnData', visibility=1, _key_is_virtual=True, storage_id=1, created_by_id=1, created_at=2024-11-21 06:54:47 UTC)
→ storage path: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna/.lamindb/xwzXDVx0UJhrno0U0000.h5ad
adata = ln.Artifact.filter(description="adata to append").one().load()

adata.obs_names_make_unique()
adata.var_names_make_unique()

adata.obs["obs_id"] = adata.obs.index
adata.var["var_id"] = adata.var.index

adata.obs["dataset"] = obs_store_df["dataset"].max()

obs_columns_same = [
    obs_col for obs_col in adata.obs.columns if obs_col in obs_columns_store
]
adata.obs = adata.obs[obs_columns_same]

var_columns_same = [
    var_col for var_col in adata.var.columns if var_col in var_columns_store
]
adata.var = adata.var[var_columns_same]

adata.write_h5ad("adata_to_append.h5ad")
Hide code cell output
/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/site-packages/anndata/_core/anndata.py:1758: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.
  utils.warn_names_duplicates("var")

Append the AnnData object from disk by revising soma_artifact.

soma_artifact = ln.integrations.save_tiledbsoma_experiment(
    ["adata_to_append.h5ad"],
    revises=soma_artifact,
    measurement_name="RNA",
    obs_id_name="obs_id",
    var_id_name="var_id",
)

Update the array store

Add a new embedding to the existing array store.

# read the data matrix
with soma_artifact.open() as soma_store:
    ms_rna = soma_store["ms"]["RNA"]
    n_obs = len(soma_store["obs"])
    n_var = len(ms_rna["var"])
    X = ms_rna["X"]["data"].read().coos((n_obs, n_var)).concat().to_scipy()

# calculate PCA embedding from the queried `X`
pca_array = sc.pp.pca(X, n_comps=2)
Hide code cell output
/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/site-packages/anndata/_core/storage.py:48: FutureWarning: AnnData previously had undefined behavior around matrices of type <class 'scipy.sparse._coo.coo_matrix'>.In 0.12, passing in this type will throw an error. Please convert to a supported type.Continue using for this minor version at your own risk.
  warnings.warn(msg, FutureWarning)

Open the array store in write mode and add PCA.

with soma_artifact.open(mode="w") as soma_store:
    tiledbsoma.io.add_matrix_to_collection(
        exp=soma_store,
        measurement_name="RNA",
        collection_name="obsm",
        matrix_name="pca",
        matrix_data=pca_array,
    )

See array store mutations

During the append-to and update operations, the data in the array store was changed. LaminDB automatically tracks these revisions recording the number of objects, hashes, and provenance.

soma_artifact.versions.df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
5 PO4E9vTgdvKGDq3v0000 None False tiledbsoma experiment None .tiledbsoma None 15088000 cbYls2PUR3eAC54UVdhaYg 151 1718.0 md5-d tiledbsoma 1 True 1 6 6 2024-11-21 06:54:44.388179+00:00 1
7 PO4E9vTgdvKGDq3v0001 None False tiledbsoma experiment None .tiledbsoma None 15099818 A21F6305SkYKSFNlLP8-eA 175 1758.0 md5-d tiledbsoma 1 True 1 6 6 2024-11-21 06:54:48.547062+00:00 1
8 PO4E9vTgdvKGDq3v0002 None True tiledbsoma experiment None .tiledbsoma None 15120626 AMj-jOV3r4lUAmDY-myNZg 184 NaN md5-d None 1 True 1 6 6 2024-11-21 06:54:49.526081+00:00 1

View lineage of the array store

Check the generating flow of the array store.

soma_artifact.view_lineage()
_images/4111f491db129799813cca094cb89e5fbc46d85865ac79a7fe6180387ec2aa93.svg

Note

For the underlying API, see the tiledbsoma documentation.