Project flow¶
LaminDB allows tracking data lineage on the entire project level.
Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.
A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-γ production.
These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.
More specifically: Why should I care about data flow?
Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.
While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.
LaminDB interfaces workflow mangers for the former and embraces the latter.
# !pip install 'lamindb[jupyter,bionty,aws]'
!lamin init --storage ./mydata
Show code cell output
→ initialized lamindb: testuser1/mydata
Import lamindb:
import lamindb as ln
from IPython.display import Image, display
→ connected lamindb: testuser1/mydata
Steps¶
In the following, we walk through exemplified steps covering different types of transforms (Transform
).
Note
The full notebooks are in this repository.
App upload of phenotypic data
¶
Register data through app upload from wetlab by testuser1
:
# This function mimics the upload of artifacts via the UI
# In reality, you simply drag and drop files into the UI
def mock_upload_crispra_result_app():
ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="upload")
ln.track(transform=transform)
output_path = ln.core.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage.root)
output_file = ln.Artifact(
output_path, description="Raw data of schmidt22 crispra GWS"
)
output_file.save()
mock_upload_crispra_result_app()
Show code cell output
/tmp/ipykernel_3550/3297532022.py:5: FutureWarning: `name` will be removed soon, please pass 'Upload GWS CRISPRa result' to `key` instead
transform = ln.Transform(name="Upload GWS CRISPRa result", type="upload")
→ created Transform('Up2CnRcwTQuC0000'), started new Run('cqhQuwWd...') at 2025-02-18 13:46:35 UTC
Hit identification in notebook
¶
Access, transform & register data in drylab by testuser2
in notebook hit-identification.
Show code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
import nbproject_test
from pathlib import Path
cwd = Path.cwd()
nbproject_test.execute_notebooks(
cwd / "project-flow-scripts/hit-identification.ipynb", write=True
)
Inspect data flow:
artifact = ln.Artifact.get(description="hits from schmidt22 crispra GWS")
artifact.view_lineage()
Sequencer upload
¶
Upload files from sequencer via script chromium_10x_upload.py:
!python project-flow-scripts/chromium_10x_upload.py
scRNA-seq bioinformatics pipeline
¶
Process uploaded files using a script or workflow manager: Pipelines – workflow managers and obtain 3 output files in a directory filtered_feature_bc_matrix/
:
!python project-flow-scripts/cellranger.py
!python project-flow-scripts/postprocess_cellranger.py
Inspect data flow:
output_file = ln.Artifact.get(description="perturbseq counts")
output_file.view_lineage()
Integrate scRNA-seq & phenotypic data
¶
Integrate data in notebook integrated-analysis.
Show code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
nbproject_test.execute_notebooks(
cwd / "project-flow-scripts/integrated-analysis.ipynb", write=True
)
Review results¶
Let’s load one of the plots:
# track the current notebook as transform
ln.track("1LCd8kco9lZU0000")
artifact = ln.Artifact.get(key__contains="figures/matrixplot")
artifact.cache()
Show code cell output
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/slpi2aiN5BlFKUsB0000.png')
display(Image(filename=artifact.path))

We see that the image artifact is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:
artifact.view_lineage()
Alternatively, we can also look at the sequence of transforms:
transform = ln.Transform.search("Project flow").first()
transform.predecessors.df()
uid | key | description | type | source_code | hash | reference | reference_type | space_id | _template_id | version | is_latest | created_at | created_by_id | _aux | _branch_code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||
6 | lB3IyPLQSmvt0000 | integrated-analysis.ipynb | Perform single cell analysis, integrate with C... | notebook | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:53.359000+00:00 | 2 | None | 1 |
transform.view_lineage()
Understand runs¶
We tracked pipeline and notebook runs through track()
, which stores a Transform
and a Run
record within a global context.
Artifact
objects are the inputs and outputs of runs.
What if I don’t want a global context?
Sometimes, we don’t want to create a global run context but manually pass a run when creating an artifact:
run = ln.Run(transform=transform)
ln.Artifact(filepath, run=run)
When does an artifact appear as a run input?
When accessing an artifact via cache()
, load()
or open()
, two things happen:
The current run gets added to
artifact.input_of
The transform of that artifact gets added as a parent of the current transform
You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False
: Can I disable tracking run inputs?
You can also track run inputs on a case by case basis via is_run_input=True
, e.g., here:
artifact.load(is_run_input=True)
Query by provenance¶
We can query or search for the notebook that created the artifact:
transform = ln.Transform.search("GWS CRIPSRa analysis").first()
And then find all the artifacts created by that notebook:
ln.Artifact.filter(transform=transform).df()
uid | key | description | suffix | kind | otype | size | hash | n_files | n_observations | _hash_type | _key_is_virtual | _overwrite_versions | space_id | storage_id | schema_id | version | is_latest | run_id | created_at | created_by_id | _aux | _branch_code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||||||
2 | yeDIkj5IXxDh3ldR0000 | None | hits from schmidt22 crispra GWS | .parquet | dataset | DataFrame | 16948 | ANdKDt5h3CqV4Bfi4KGCEQ | None | None | md5 | True | False | 1 | 1 | None | None | True | 2 | 2025-02-18 13:46:40.671000+00:00 | 2 | None | 1 |
Which transform ingested a given artifact?
artifact = ln.Artifact.filter().first()
artifact.transform
Transform(uid='Up2CnRcwTQuC0000', is_latest=True, key='Upload GWS CRISPRa result', type='upload', space_id=1, created_by_id=1, created_at=2025-02-18 13:46:35 UTC)
And which user?
artifact.created_by
<User: User object (1)>
Which transforms were created by a given user?
users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).df()
uid | key | description | type | source_code | hash | reference | reference_type | space_id | _template_id | version | is_latest | created_at | created_by_id | _aux | _branch_code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||
1 | Up2CnRcwTQuC0000 | Upload GWS CRISPRa result | None | upload | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:35.690000+00:00 | 1 | None | 1 |
3 | qCJPkOuZAi9q0000 | chromium_10x_upload.py | chromium_10x_upload.py | script | import lamindb as ln\n\nln.setup.login("testus... | nXWdh475QhVKuoAfToWZTw | None | None | 1 | None | None | True | 2025-02-18 13:46:43.274000+00:00 | 1 | None | 1 |
7 | 1LCd8kco9lZU0000 | project-flow.ipynb | Project flow | notebook | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:55.130000+00:00 | 1 | None | 1 |
Which notebooks were created by a given user?
ln.Transform.filter(created_by=users.testuser1, type="notebook").df()
uid | key | description | type | source_code | hash | reference | reference_type | space_id | _template_id | version | is_latest | created_at | created_by_id | _aux | _branch_code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||
7 | 1LCd8kco9lZU0000 | project-flow.ipynb | Project flow | notebook | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:55.130000+00:00 | 1 | None | 1 |
We can also view all recent additions to the entire database:
ln.view()
Show code cell output
uid | key | description | suffix | kind | otype | size | hash | n_files | n_observations | _hash_type | _key_is_virtual | _overwrite_versions | space_id | storage_id | schema_id | version | is_latest | run_id | created_at | created_by_id | _aux | _branch_code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||||||
12 | slpi2aiN5BlFKUsB0000 | figures/matrixplot_fig2_score-wgs-hits-per-clu... | None | .png | None | None | 28815 | DT0-ldk79wZs-ZraQT_ipQ | None | None | md5 | True | False | 1 | 1 | None | None | True | 6 | 2025-02-18 13:46:54.136000+00:00 | 2 | None | 1 |
11 | eKAvntc8I2ZHCOX50000 | figures/umap_fig1_score-wgs-hits.png | None | .png | None | None | 119000 | x5pcU-MOhyFKeAQaE8YYOQ | None | None | md5 | True | False | 1 | 1 | None | None | True | 6 | 2025-02-18 13:46:53.970000+00:00 | 2 | None | 1 |
10 | yTqeeaWTHBUgrvLu0000 | schmidt22_perturbseq.h5ad | perturbseq counts | .h5ad | None | AnnData | 20659936 | la7EvqEUMDlug9-rpw-udA | None | None | md5 | False | False | 1 | 1 | None | None | True | 5 | 2025-02-18 13:46:49.480000+00:00 | 2 | None | 1 |
9 | IgAd1tmjkT4bAEyw0000 | perturbseq/filtered_feature_bc_matrix/features... | None | .tsv.gz | None | None | 6 | dVHNEvEpKMHZF59S6xVbiA | None | None | md5 | False | False | 1 | 1 | None | None | True | 4 | 2025-02-18 13:46:46.637000+00:00 | 2 | None | 1 |
7 | SMthlPOA7B0bsvnq0000 | perturbseq/filtered_feature_bc_matrix/barcodes... | None | .tsv.gz | None | None | 6 | Rpz9F0_XANuPzEB27wdM_g | None | None | md5 | False | False | 1 | 1 | None | None | True | 4 | 2025-02-18 13:46:46.636000+00:00 | 2 | None | 1 |
8 | NcQ3S3AH2va3MhFw0000 | perturbseq/filtered_feature_bc_matrix/matrix.m... | None | .mtx.gz | None | None | 6 | k20Tl3P9uy5UFlzxsm4bKQ | None | None | md5 | False | False | 1 | 1 | None | None | True | 4 | 2025-02-18 13:46:46.636000+00:00 | 2 | None | 1 |
4 | 7Fd68ZBq6kLqe4cy0000 | fastq/perturbseq_R2_001.fastq.gz | None | .fastq.gz | None | None | 6 | jgnlS9MT2Atr-gw6j-HGBw | None | None | md5 | False | False | 1 | 1 | None | None | True | 3 | 2025-02-18 13:46:43.672000+00:00 | 1 | None | 1 |
uid | name | started_at | finished_at | reference | reference_type | _is_consecutive | _status_code | space_id | transform_id | report_id | _logfile_id | environment_id | initiated_by_run_id | created_at | created_by_id | _aux | _branch_code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||||
1 | cqhQuwWdpLGYcl1lIupu | None | 2025-02-18 13:46:35.692717+00:00 | NaT | None | None | None | 0 | 1 | 1 | NaN | None | NaN | None | 2025-02-18 13:46:35.693000+00:00 | 1 | None | 1 |
2 | A0aXIVaYtor2WbYS0qGZ | None | 2025-02-18 13:46:40.232394+00:00 | NaT | None | None | None | 0 | 1 | 2 | NaN | None | NaN | None | 2025-02-18 13:46:40.232000+00:00 | 2 | None | 1 |
3 | MD2xAdXPYkK17qns107o | None | 2025-02-18 13:46:43.276923+00:00 | 2025-02-18 13:46:43.680876+00:00 | None | None | True | 0 | 1 | 3 | 6.0 | None | 5.0 | None | 2025-02-18 13:46:43.277000+00:00 | 1 | None | 1 |
4 | uer4JNdr7tS3LvudQFdM | None | 2025-02-18 13:46:46.222445+00:00 | NaT | None | None | None | 0 | 1 | 4 | NaN | None | NaN | None | 2025-02-18 13:46:46.223000+00:00 | 2 | None | 1 |
5 | sD3Bfhjm9sTJM89ilP8l | None | 2025-02-18 13:46:48.594951+00:00 | NaT | None | None | None | 0 | 1 | 5 | NaN | None | NaN | None | 2025-02-18 13:46:48.595000+00:00 | 2 | None | 1 |
6 | MGPr5IOPxapn4eiEum37 | None | 2025-02-18 13:46:53.362988+00:00 | NaT | None | None | None | 0 | 1 | 6 | NaN | None | NaN | None | 2025-02-18 13:46:53.363000+00:00 | 2 | None | 1 |
7 | rrg1MUzmN7LHpi7MA5zQ | None | 2025-02-18 13:46:55.133955+00:00 | NaT | None | None | None | 0 | 1 | 7 | NaN | None | NaN | None | 2025-02-18 13:46:55.134000+00:00 | 1 | None | 1 |
uid | root | description | type | region | instance_uid | space_id | run_id | created_at | created_by_id | _aux | _branch_code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||
1 | QsgNNLxiMgSB | /home/runner/work/lamin-usecases/lamin-usecase... | None | local | None | 54ZGqgkROOFf | 1 | None | 2025-02-18 13:46:32.868000+00:00 | 1 | None | 1 |
uid | key | description | type | source_code | hash | reference | reference_type | space_id | _template_id | version | is_latest | created_at | created_by_id | _aux | _branch_code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||
7 | 1LCd8kco9lZU0000 | project-flow.ipynb | Project flow | notebook | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:55.130000+00:00 | 1 | None | 1 |
6 | lB3IyPLQSmvt0000 | integrated-analysis.ipynb | Perform single cell analysis, integrate with C... | notebook | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:53.359000+00:00 | 2 | None | 1 |
5 | YqmbO6oMXjRj0000 | postprocess_cellranger.py | postprocess_cellranger.py | script | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:48.592000+00:00 | 2 | None | 1 |
4 | kLAJcWAQyT7N0000 | Cell Ranger | None | pipeline | None | None | https://www.10xgenomics.com/support/software/c... | None | 1 | None | 7.2.0 | True | 2025-02-18 13:46:46.220000+00:00 | 2 | None | 1 |
3 | qCJPkOuZAi9q0000 | chromium_10x_upload.py | chromium_10x_upload.py | script | import lamindb as ln\n\nln.setup.login("testus... | nXWdh475QhVKuoAfToWZTw | None | None | 1 | None | None | True | 2025-02-18 13:46:43.274000+00:00 | 1 | None | 1 |
2 | T0T28btuB0PG0000 | hit-identification.ipynb | GWS CRIPSRa analysis | notebook | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:40.229000+00:00 | 2 | None | 1 |
1 | Up2CnRcwTQuC0000 | Upload GWS CRISPRa result | None | upload | None | None | None | None | 1 | None | None | True | 2025-02-18 13:46:35.690000+00:00 | 1 | None | 1 |
Show code cell content
!lamin login testuser1
!rm -r ./mydata
!lamin delete --force mydata