bionty.Disease¶
- class bionty.Disease(name: str, ontology_id: str | None, abbr: str | None, synonyms: str | None, description: str | None, parents: list[Disease], source: Source | None)¶
Bases:
BioRecord,TracksRun,TracksUpdatesDiseases - Mondo, Human Disease.
Notes
Bulk create Disease records via
from_values().For more info, see tutorials: Disease.
Example:
import bionty as bt record = bt.Disease.from_source(name="Alzheimer disease")
Simple fields¶
- uid: str¶
A universal id (base62-encoded hash of defining fields).
- name: str¶
Name of the disease.
- ontology_id: str | None¶
Ontology ID of the disease.
- abbr: str | None¶
A unique abbreviation of disease.
- synonyms: str | None¶
Bar-separated (|) synonyms that correspond to this disease.
- description: str | None¶
Description of the disease.
- is_locked: bool¶
Whether the record is locked for edits.
- created_at: datetime¶
Time of creation of record.
- updated_at: datetime¶
Time of last update to record.
Relational fields¶
- branch: Branch¶
Whether record is on a branch or in another “special state”.
- parents: Disease¶
Parent disease records.
- records: Record¶
Records linked to the disease.
Class methods¶
- classmethod from_source(cls, *, name=None, ontology_id=None, abbr=None, source=None, mute=False, **kwargs)¶
Create a Disease record from source based on a single identifying field.
- Parameters:
name (
str|None, default:None) – Name of the disease (e.g. “Alzheimer disease”, “type 2 diabetes”)ontology_id (
str|None, default:None) – Disease ontology ID (e.g. “MONDO:0004975”)abbr (
str|None, default:None) – Unique abbreviation of disease source: Optional Source record to usemute (
bool, default:False) – Whether to suppress logging
- Return type:
- Returns:
A single Disease record, list of Disease records, or None if not found
Example:
import bionty as bt record = bt.Disease.from_source(name="Alzheimer disease") record = bt.Disease.from_source(ontology_id="MONDO:0004975") record = bt.Disease.from_source(name="type 2 diabetes")
- classmethod import_source(source=None, update_records=False, *, organism=None, ignore_conflicts=True)¶
Bulk save records from a Bionty ontology.
Use this method to initialize your registry with public ontology.
- Parameters:
source (
Source|None, default:None) – Source record to import records from.update_records (
bool, default:False) –If True, update existing records with the new source.
If a record has the same metadata in the new source, link the record to the new source.
If a record has no artifacts associated, update it’s metadata and link to the new source.
If a record associated artifacts, but different name in the new source, create a new record with the new source.
organism (
str|SQLRecord|None, default:None) – Organism name or record. Required for entities with a required organism foreign key when no source is passed.ignore_conflicts (
bool, default:True) – Whether to ignore conflicts during bulk record creation.
Examples:
import bionty as bt # import all records from a default source default_sources = bt.Source.filter(entity="bionty.CellType", currently_used=True).to_dataframe() bt.CellType.import_source() # import all records from a specific source source = bt.Source.get(entity="bionty.CellType", source="cl", version="2022-08-16") bt.CellType.import_source(source) bt.CellType.to_dataframe() # all records from the source are now in the registry # update existing records with a new source (version update) source = bt.Source.get(entity="bionty.CellType", source="cl", version="2024-08-16") bt.CellType.import_source(source, update_records=True)
- classmethod add_source(source, *, df=None, version=None, organism=None)¶
Link a source record to the entity with a reference DataFrame.
Creates or retrieves a Source record for the entity and optionally associates it with a DataFrame artifact containing the ontology data. If the source already exists with a DataFrame artifact, returns the existing source.
- Parameters:
source (
Source|PublicOntology|str) –Source specification. Can be:
Source record: Existing
bionty.SourceinstancePublicOntology: PublicOntology object with source metadata
str: Source name (e.g., “mondo”, “cl”, “go”)
df (
DataFrame|None, default:None) – Optional DataFrame containing ontology data to store as Artifact. If None and source is a PublicOntology, uses the ontology’s DataFrame.version (
str|None, default:None) – Source version string. Required when source is str and no existing source found. Examples: “2025-06-03”, “v1.0”, “release-112”organism (
str|None, default:None) – Organism identifier. Required for organism-specific entities when source is str. Use “all” for cross-organism ontologies.
- Return type:
Examples
Add a source by name with version and organism:
import bionty as bt source = bt.Disease.add_source("mondo", version="2025-06-03", organism="all")
Add a source to an entity with a custom DataFrame:
import pandas as pd df = pd.DataFrame({"name": ["disease1"], "ontology_id": ["MONDO:123"]}) source = bt.Source( entity="bionty.Disease", name="new mondo", version="99.999", organism="human", ) source = bt.Disease.add_source(source=source, df=df)
Add from existing PublicOntology:
pub_ont = bt.Disease.public() source = bt.Disease.add_source(pub_ont)
Add organism-specific source:
source = bt.Gene.add_source("ensembl", version="release-112", organism="human")
- classmethod public(organism=None, source=None)¶
The corresponding
bionty.base.PublicOntologyobject.Note that the source is auto-configured and tracked via
bionty.Source.- Parameters:
- Return type:
See also
Example:
import bionty as bt # default source celltype_pub = bt.CellType.public() celltype_pub #> PublicOntology #> Entity: CellType #> Organism: all #> Source: cl, 2023-04-20 #> #terms: 2698 # default source of a organism gene_pub = bt.Gene.public(organism="mouse") gene_pub #> PublicOntology #> Entity: Gene #> Organism: mouse #> Source: ensembl, release-112 #> #terms: 57510
- classmethod filter(*queries, **expressions)¶
Query records.
- Parameters:
queries – One or multiple
Qobjects.expressions – Fields and values passed as Django query expressions.
- Return type:
- Returns:
A
QuerySet.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ln.ULabel(name="my label").save() >>> ln.ULabel.filter(name__startswith="my").to_dataframe()
- classmethod get(idlike=None, **expressions)¶
Get a single record.
- Parameters:
idlike (
int|str|None, default:None) – Either a uid stub, uid or an integer id.expressions – Fields and values passed as Django query expressions.
- Raises:
docs:lamindb.errors.DoesNotExist – In case no matching record is found.
- Return type:
See also
Guide: Query & search registries
Django documentation: Queries
Examples
ulabel = ln.ULabel.get("FvtpPJLJ") ulabel = ln.ULabel.get(name="my-label")
- classmethod to_dataframe(include=None, features=False, limit=100)¶
Evaluate and convert to
pd.DataFrame.By default, maps simple fields and foreign keys onto
DataFramecolumns.Guide: Query & search registries
- Parameters:
include (
str|list[str] |None, default:None) – Related data to include as columns. Takes strings of form"records__name","cell_types__name", etc. or a list of such strings. ForArtifact,Record, andRun, can also pass"features"to include features with data types pointing to entities in the core schema. If"privates", includes private fields (fields starting with_).features (
bool|list[str], default:False) – Configure the features to include. Can be a feature name or a list of such names. If"queryset", infers the features used within the current queryset. Only available forArtifact,Record, andRun.limit (
int, default:100) – Maximum number of rows to display. IfNone, includes all results.order_by – Field name to order the records by. Prefix with ‘-’ for descending order. Defaults to ‘-id’ to get the most recent records. This argument is ignored if the queryset is already ordered or if the specified field does not exist.
- Return type:
DataFrame
Examples
Include the name of the creator:
ln.Record.to_dataframe(include="created_by__name"])
Include features:
ln.Artifact.to_dataframe(include="features")
Include selected features:
ln.Artifact.to_dataframe(features=["cell_type_by_expert", "cell_type_by_model"])
- classmethod search(string, *, field=None, limit=20, case_sensitive=False)¶
Search.
- Parameters:
string (
str) – The input string to match against the field ontology values.field (
str|DeferredAttribute|None, default:None) – The field or fields to search. Search all string fields by default.limit (
int|None, default:20) – Maximum amount of top results to return.case_sensitive (
bool, default:False) – Whether the match is case sensitive.
- Return type:
- Returns:
A sorted
DataFrameof search results with a score in columnscore. Ifreturn_querysetisTrue.QuerySet.
Examples
>>> ulabels = ln.ULabel.from_values(["ULabel1", "ULabel2", "ULabel3"], field="name") >>> ln.save(ulabels) >>> ln.ULabel.search("ULabel2")
- classmethod lookup(field=None, return_field=None)¶
Return an auto-complete object for a field.
- Parameters:
field (
str|DeferredAttribute|None, default:None) – The field to look up the values for. Defaults to first string field.return_field (
str|DeferredAttribute|None, default:None) – The field to return. IfNone, returns the whole record.keep – When multiple records are found for a lookup, how to return the records. -
"first": return the first record. -"last": return the last record. -False: return all records.
- Return type:
NamedTuple- Returns:
A
NamedTupleof lookup information of the field values with a dictionary converter.
See also
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> bt.Gene.from_source(symbol="ADGB-DT").save() >>> lookup = bt.Gene.lookup() >>> lookup.adgb_dt >>> lookup_dict = lookup.dict() >>> lookup_dict['ADGB-DT'] >>> lookup_by_ensembl_id = bt.Gene.lookup(field="ensembl_gene_id") >>> genes.ensg00000002745 >>> lookup_return_symbols = bt.Gene.lookup(field="ensembl_gene_id", return_field="symbol")
- classmethod using(instance)¶
Use a non-default LaminDB instance.
- Parameters:
instance (
str|None) – An instance identifier of form “account_handle/instance_name”.- Return type:
Examples
>>> ln.ULabel.using("account_handle/instance_name").search("ULabel7", field="name") uid score name ULabel7 g7Hk9b2v 100.0 ULabel5 t4Jm6s0q 75.0 ULabel6 r2Xw8p1z 75.0
- classmethod inspect(values, field=None, *, mute=False, organism=None, source=None, from_source=True, strict_source=False)¶
Inspect if values are mappable to a field.
Being mappable means that an exact match exists.
- Parameters:
values (
list[str] |Series|array) – Values that will be checked against the field.field (
str|DeferredAttribute|None, default:None) – The field of values. Examples are'ontology_id'to map against the source ID or'name'to map against the ontologies field names.mute (
bool, default:False) – Whether to mute logging.organism (
str|SQLRecord|None, default:None) – An Organism name or record.source (
SQLRecord|None, default:None) – Abionty.Sourcerecord that specifies the version to inspect against.strict_source (
bool, default:False) – Determines the validation behavior against records in the registry. - IfFalse, validation will include all records in the registry, ignoring the specified source. - IfTrue, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against public sources.
- Return type:
bionty.base.dev.InspectResult
See also
Example:
import bionty as bt # save some gene records bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol", organism="human").save() # inspect gene symbols gene_symbols = ["A1CF", "A1BG", "FANCD1", "FANCD20"] result = bt.Gene.inspect(gene_symbols, field=bt.Gene.symbol, organism="human") assert result.validated == ["A1CF", "A1BG"] assert result.non_validated == ["FANCD1", "FANCD20"]
- classmethod validate(values, field=None, *, mute=False, organism=None, source=None, strict_source=False)¶
Validate values against existing values of a string field.
Note this is strict_source validation, only asserts exact matches.
- Parameters:
values (
list[str] |Series|array) – Values that will be validated against the field.field (
str|DeferredAttribute|None, default:None) – The field of values. Examples are'ontology_id'to map against the source ID or'name'to map against the ontologies field names.mute (
bool, default:False) – Whether to mute logging.organism (
str|SQLRecord|None, default:None) – An Organism name or record.source (
SQLRecord|None, default:None) – Abionty.Sourcerecord that specifies the version to validate against.strict_source (
bool, default:False) – Determines the validation behavior against records in the registry. - IfFalse, validation will include all records in the registry, ignoring the specified source. - IfTrue, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against public sources.
- Return type:
ndarray- Returns:
A vector of booleans indicating if an element is validated.
See also
Example:
import bionty as bt bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol", organism="human").save() gene_symbols = ["A1CF", "A1BG", "FANCD1", "FANCD20"] bt.Gene.validate(gene_symbols, field=bt.Gene.symbol, organism="human") #> array([ True, True, False, False])
- classmethod from_values(values, field=None, create=False, organism=None, source=None, mute=False)¶
Bulk create validated records by parsing values for an identifier such as a name or an id).
- Parameters:
values (
list[str] |Series|array) – A list of values for an identifier, e.g.["name1", "name2"].field (
str|DeferredAttribute|None, default:None) – ASQLRecordfield to look up, e.g.,bt.CellMarker.name.create (
bool, default:False) – Whether to create records if they don’t exist.organism (
SQLRecord|str|None, default:None) – Abionty.Organismname or record.source (
SQLRecord|None, default:None) – Abionty.Sourcerecord to validate against to create records for.mute (
bool, default:False) – Whether to mute logging.
- Return type:
- Returns:
A list of validated records. For bionty registries. Also returns knowledge-coupled records.
Notes
For more info, see tutorial: Manage biological ontologies.
Example:
import bionty as bt # Bulk create from non-validated values will log warnings & returns empty list ulabels = ln.ULabel.from_values(["benchmark", "prediction", "test"]) assert len(ulabels) == 0 # Bulk create records from validated values returns the corresponding existing records ulabels = ln.ULabel.from_values(["benchmark", "prediction", "test"], create=True).save() assert len(ulabels) == 3 # Bulk create records from public reference bt.CellType.from_values(["T cell", "B cell"]).save()
- classmethod standardize(values, field=None, *, return_field=None, return_mapper=False, case_sensitive=False, mute=False, source_aware=True, keep='first', synonyms_field='synonyms', organism=None, source=None, strict_source=False)¶
Maps input synonyms to standardized names.
- Parameters:
values (
Iterable) – Identifiers that will be standardized.field (
str|DeferredAttribute|None, default:None) – The field representing the standardized names.return_field (
str|DeferredAttribute|None, default:None) – The field to return. Defaults to field.return_mapper (
bool, default:False) – IfTrue, returns{input_value: standardized_name}.case_sensitive (
bool, default:False) – Whether the mapping is case sensitive.mute (
bool, default:False) – Whether to mute logging.source_aware (
bool, default:True) – Whether to standardize from public source. Defaults toTruefor BioRecord registries.keep (
Literal['first','last',False], default:'first') –When a synonym maps to multiple names, determines which duplicates to mark as
pd.DataFrame.duplicated: -"first": returns the first mapped standardized name -"last": returns the last mapped standardized name -False: returns all mapped standardized name.When
keepisFalse, the returned list of standardized names will contain nested lists in case of duplicates.When a field is converted into return_field, keep marks which matches to keep when multiple return_field values map to the same field value.
synonyms_field (
str, default:'synonyms') – A field containing the concatenated synonyms.organism (
str|SQLRecord|None, default:None) – An Organism name or record.source (
SQLRecord|None, default:None) – Abionty.Sourcerecord that specifies the version to validate against.strict_source (
bool, default:False) – Determines the validation behavior against records in the registry. - IfFalse, validation will include all records in the registry, ignoring the specified source. - IfTrue, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against public sources.
- Return type:
list[str] |dict[str,str]- Returns:
If
return_mapperisFalse– a list of standardized names. Otherwise, a dictionary of mapped values with mappable synonyms as keys and standardized names as values.
See also
add_synonym()Add synonyms.
remove_synonym()Remove synonyms.
Example:
import bionty as bt # save some gene records bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol", organism="human").save() # standardize gene synonyms gene_synonyms = ["A1CF", "A1BG", "FANCD1", "FANCD20"] bt.Gene.standardize(gene_synonyms) #> ['A1CF', 'A1BG', 'BRCA2', 'FANCD20']
Methods¶
- save(*args, **kwargs)¶
Save the record and its parents recursively.
Example:
import bionty as bt record = bt.CellType.from_source(name="T cell") record.save()
- Return type:
- restore()¶
Restore from trash onto the main branch.
- Return type:
None
- delete(permanent=None, **kwargs)¶
Delete record.
- Parameters:
permanent (
bool|None, default:None) – Whether to permanently delete the record (skips trash). IfNone, performs soft delete if the record is not already in the trash.- Return type:
None
Examples
For any
SQLRecordobjectrecord, call:>>> record.delete()
- view_parents(field=None, with_children=False, distance=5)¶
View parents in an ontology.
- Parameters:
field (
str|DeferredAttribute|None, default:None) – Field to display on graphwith_children (
bool, default:False) – Whether to also show children.distance (
int, default:5) – Maximum distance still shown.
Ontological hierarchies:
ULabel(project & sub-project),CellType(cell type & subtype).Examples
>>> import bionty as bt >>> bt.Tissue.from_source(name="subsegmental bronchus").save() >>> record = bt.Tissue.get(name="respiratory tube") >>> record.view_parents() >>> tissue.view_parents(with_children=True)
- view_children(field=None, distance=5)¶
View children in an ontology.
- Parameters:
field (
str|DeferredAttribute|None, default:None) – Field to display on graphdistance (
int, default:5) – Maximum distance still shown.
Ontological hierarchies:
ULabel(project & sub-project),CellType(cell type & subtype).Examples
>>> import bionty as bt >>> bt.Tissue.from_source(name="subsegmental bronchus").save() >>> record = bt.Tissue.get(name="respiratory tube") >>> record.view_parents() >>> tissue.view_parents(with_children=True)
- add_synonym(synonym, force=False, save=None)¶
Add synonyms to a record.
- Parameters:
synonym (
str|list[str] |Series|array) – The synonyms to add to the record.force (
bool, default:False) – Whether to add synonyms even if they are already synonyms of other records.save (
bool|None, default:None) – Whether to save the record to the database.
See also
remove_synonym()Remove synonyms.
Example:
import bionty as bt # save "T cell" record record = bt.CellType.from_source(name="T cell").save() record.synonyms #> "T-cell|T lymphocyte|T-lymphocyte" # add a synonym record.add_synonym("T cells") record.synonyms #> "T cells|T-cell|T-lymphocyte|T lymphocyte"
- remove_synonym(synonym)¶
Remove synonyms from a record.
- Parameters:
synonym (
str|list[str] |Series|array) – The synonym values to remove.
See also
add_synonym()Add synonyms
Example:
import bionty as bt # save "T cell" record record = bt.CellType.from_source(name="T cell").save() record.synonyms #> "T-cell|T lymphocyte|T-lymphocyte" # remove a synonym record.remove_synonym("T-cell") record.synonyms #> "T lymphocyte|T-lymphocyte"
- set_abbr(value)¶
Set value for abbr field and add to synonyms.
- Parameters:
value (
str) – A value for an abbreviation.
See also
Example:
import bionty as bt # save an experimental factor record scrna = bt.ExperimentalFactor.from_source(name="single-cell RNA sequencing").save() assert scrna.abbr is None assert scrna.synonyms == "single-cell RNA-seq|single-cell transcriptome sequencing|scRNA-seq|single cell RNA sequencing" # set abbreviation scrna.set_abbr("scRNA") assert scrna.abbr == "scRNA" # synonyms are updated assert scrna.synonyms == "scRNA|single-cell RNA-seq|single cell RNA sequencing|single-cell transcriptome sequencing|scRNA-seq"